Patents by Inventor Jui-Lung Li

Jui-Lung Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6969625
    Abstract: A method and structure for a microelectronic device comprises a first film over a substrate, a first polish resistant layer over the first film, a second film over the first polish resistant layer, a second polish resistant layer over the second film, wherein the first and second polish resistant layers comprise diamond-like carbon. The first film comprises an electrically resistive material, while the second film comprises low resistance conductive material. The first film is an electrical resistor embodied as a magnetic read sensor. The electrically resistive material is sensitive to magnetic fields. The device further comprises a generally vertical junction between the first and second films and a dielectric film abutted to the electrically resistive material.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: November 29, 2005
    Assignee: International Business Machines Corporation
    Inventors: Marie-Claire Cyrille, Frederick H. Dill, Cherngye Hwang, Jui-Lung Li
  • Patent number: 6960521
    Abstract: Method and apparatus are provided for polishing substrates comprising conductive and low k dielectric materials with reduced or minimum substrate surface damage and delamination. In one aspect, a method is provided for processing a substrate including positioning a substrate having a conductive material formed thereon in a polishing apparatus having one or more rotational carrier heads and one or more rotatable platens, wherein the carrier head comprises a retaining ring and a membrane for securing a substrate and the platen has a polishing article disposed thereon, contacting the substrate surface and the polishing article to each other at a retaining ring contact pressure of about 0.4 psi or greater than a membrane pressure, and polishing the substrate to remove conductive material.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: November 1, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Yongsik Moon, David Mai, Kapila Wijekoon, Rajeev Bajaj, Rahul Surana, Yongqi Hu, Tony S. Kaushal, Shijian Li, Jui-Lung Li, Shi-Ping Wang, Gary Lam, Fred C. Redeker
  • Publication number: 20050219747
    Abstract: A magnetic write head for us in perpendicular magnetic recording tapered trailing shield design for improved write flux, and field gradient performance.
    Type: Application
    Filed: March 31, 2004
    Publication date: October 6, 2005
    Inventors: Yimin Hsu, Quang Le, Jui-Lung Li, Ian McFadyen, James Nix, Neil Robertson, Mason Williams
  • Publication number: 20050067372
    Abstract: A method for forming a read transducer by ion milling and chemical mechanical polishing to eliminate nonuniformity near the MR sensor is disclosed. The resist mask is eliminated in the read transducer formation process so that the thickness of the layers near the read transducer has a uniform thickness.
    Type: Application
    Filed: September 25, 2003
    Publication date: March 31, 2005
    Inventors: Jui-Lung Li, Jyh-Shuey Lo
  • Publication number: 20050045580
    Abstract: A method for milling a structure. A single- or multi-layer resist having no undercut is added to a surface of a structure to be milled, the surface to be milled defining a plane. A milling process, such as ion milling, is performed. The milling process includes milling the structure at high incidence and milling the structure at razing incidence. The milling process can be performed only once, or repeated multiple times. High incidence can be defined as about 65 to about 90 degrees from the plane of the surface being milled. Razing incidence can be defined as about 0 to about 30 degrees from the plane of the surface being milled.
    Type: Application
    Filed: August 29, 2003
    Publication date: March 3, 2005
    Inventors: Amanda Baer, Marie-Claire Cyrille, Frederick Dill, Wipul Jayasekara, Jui-Lung Li, Hugo Santini, Benjamin Wang
  • Publication number: 20050041341
    Abstract: A method and structure for a microelectronic device comprises a first film over a substrate, a first polish resistant layer over the first film, a second film over the first polish resistant layer, a second polish resistant layer over the second film, wherein the first and second polish resistant layers comprise diamond-like carbon. The first film comprises an electrically resistive material, while the second film comprises low resistance conductive material. The first film is an electrical resistor embodied as a magnetic read sensor. The electrically resistive material is sensitive to magnetic fields. The device further comprises a generally vertical junction between the first and second films and a dielectric film abutted to the electrically resistive material.
    Type: Application
    Filed: September 24, 2004
    Publication date: February 24, 2005
    Inventors: Marie-Claire Cyrille, Frederick Dill, Cherngye Hwang, Jui-Lung Li
  • Patent number: 6858909
    Abstract: A method and structure for a microelectronic device comprises a first film over a substrate, a first polish resistant layer over the first film, a second film over the first polish resistant layer, a second polish resistant layer over the second film, wherein the first and second polish resistant layers comprise diamond-like carbon. The first film comprises an electrically resistive material, while the second film comprises low resistance conductive material. The first film is an electrical resistor embodied as a magnetic read sensor. The electrically resistive material is sensitive to magnetic fields. The device further comprises a generally vertical junction between the first and second films and a dielectric film abutted to the electrically resistive material.
    Type: Grant
    Filed: November 29, 2002
    Date of Patent: February 22, 2005
    Assignee: International Business Machines Corporation
    Inventors: Marie-Claire Cyrille, Frederick H. Dill, Cherngye Hwang, Jui-Lung Li
  • Publication number: 20050032248
    Abstract: A method for providing a liftoff process using a single layer resist and chemical mechanical polishing and sensor formed therewith are disclosed. Chemical mechanical polishing is combined with liftoff using only a single resist layer to allow the removal of leftover fencing on the side of a lifted resist pattern.
    Type: Application
    Filed: August 4, 2003
    Publication date: February 10, 2005
    Inventors: Marie-Claire Cyrille, Kim Lee, Jui-Lung Li, Chun-Ming Wang
  • Publication number: 20050032381
    Abstract: Method and apparatus are provided for polishing substrates comprising conductive and low k dielectric materials with reduced or minimum substrate surface damage and delamination. In one aspect, a method is provided for processing a substrate including positioning a substrate having a conductive material formed thereon in a polishing apparatus having one or more rotational carrier heads and one or more rotatable platens, wherein the carrier head comprises a retaining ring and a membrane for securing a substrate and the platen has a polishing article disposed thereon, contacting the substrate surface and the polishing article to each other at a retaining ring contact pressure of about 0.4 psi or greater than a membrane pressure, and polishing the substrate to remove conductive material.
    Type: Application
    Filed: September 13, 2004
    Publication date: February 10, 2005
    Inventors: Yongsik Moon, David Mai, Kapila Wijekoon, Rajeev Bajaj, Rahul Surana, Yongqi Hu, Tony Kaushal, Shijian Li, Jui-Lung Li, Shi-Ping Wang, Gary Lam, Fred Redeker
  • Publication number: 20050024782
    Abstract: A read head has a bottom lead made of material that is relatively polish resistant and a top lead layer that polishes down more easily than the bottom layer. With this structure, when the layers are deposited and then polished down, the top layer recesses away from the sensor (and bottom lead layer) in a controlled fashion, providing an acceptable lead structure that reduces the mismatch between the read head physical read width and magnetic read width.
    Type: Application
    Filed: July 29, 2003
    Publication date: February 3, 2005
    Applicant: Hitachi Global Storage Technologies
    Inventors: Marie-Claire Cyrille, Frederick Dill, Kuok Ho, Jui-Lung Li, Scott MacDonald, James Nix, Ching Tsang
  • Publication number: 20050026442
    Abstract: Method and apparatus are provided for polishing conductive materials with low dishing of features and reduced or minimal remaining residues. In one aspect, a method is provided for processing a substrate by polishing the substrate to remove bulk conductive material and polishing the substrate by a ratio of carrier head rotational speed to platen rotational speed of between about 2:1 and about 3:1 to remove residual conductive material. In another aspect, a method is provided for processing a substrate including polishing the substrate at a first relative linear velocity between about 600 mm/second and about 1900 mm/second at the center of the substrate, and polishing the substrate at a second relative linear velocity between about 100 mm/second and about 550 mm/second at the center of the substrate.
    Type: Application
    Filed: August 24, 2004
    Publication date: February 3, 2005
    Inventors: Shijian Li, Jui-Lung Li, Shi-Ping Wang, Gary Lam, David Mai, Fred Redeker
  • Patent number: 6790768
    Abstract: Method and apparatus are provided for polishing substrates comprising conductive and low k dielectric materials with reduced or minimum substrate surface damage and delamination. In one aspect, a method is provided for processing a substrate including positioning a substrate having a conductive material formed thereon in a polishing apparatus having one or more rotational carrier heads and one or more rotatable platens, wherein the carrier head comprises a retaining ring and a membrane for securing a substrate and the platen has a polishing article disposed thereon, contacting the substrate surface and the polishing article to each other at a retaining ring contact pressure of about 0.4 psi or greater than a membrane pressure, and polishing the substrate to remove conductive material.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: September 14, 2004
    Assignee: Applied Materials Inc.
    Inventors: Yongsik Moon, David Mai, Kapila Wijekoon, Rajeev Bajaj, Rahul Surana, Yongqi Hu, Tony S. Kaushal, Shijian Li, Jui-Lung Li, Shi-Ping Wang, Gary Lam, Fred C. Redeker
  • Patent number: 6783432
    Abstract: A method and composition for planarizing a substrate. The composition includes a pressure sensitive solution and one or more chemical agents for complexing with a metal or oxidized metal. The method for removal of a copper containing layer from a substrate surface, comprising applying a composition to a polishing media, the composition comprising a pressure sensitive solution, and one or more chemical agents for complexing with a metal or oxidized metal, and polishing the substrate surface with the polishing media.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: August 31, 2004
    Assignee: Applied Materials Inc.
    Inventors: Jui-Lung Li, Yuchun Wang, Rajeev Bajaj, Fred C. Redeker
  • Patent number: 6780773
    Abstract: Method and apparatus are provided for polishing conductive materials with low dishing of features and reduced or minimal remaining residues. In one aspect, a method is provided for processing a substrate by polishing the substrate to remove bulk conductive material and polishing the substrate by a ratio of carrier head rotational speed to platen rotational speed of between about 2:1 and about 3:1 to remove residual conductive material. In another aspect, a method is provided for processing a substrate including polishing the substrate at a first relative linear velocity between about 600 mm/second and about 1900 mm/second at the center of the substrate, and polishing the substrate at a second relative linear velocity between about 100 mm/second and about 550 mm/second at the center of the substrate.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: August 24, 2004
    Assignee: Applied Materials Inc.
    Inventors: Shijian Li, Jui-Lung Li, Shi-Ping Wang, Gary Lam, David Mai, Fred C. Redeker
  • Publication number: 20040106295
    Abstract: A method and structure for a microelectronic device comprises a first film over a substrate, a first polish resistant layer over the first film, a second film over the first polish resistant layer, a second polish resistant layer over the second film, wherein the first and second polish resistant layers comprise diamond-like carbon. The first film comprises an electrically resistive material, while the second film comprises low resistance conductive material. The first film is an electrical resistor embodied as a magnetic read sensor. The electrically resistive material is sensitive to magnetic fields. The device further comprises a generally vertical junction between the first and second films and a dielectric film abutted to the electrically resistive material.
    Type: Application
    Filed: November 29, 2002
    Publication date: June 3, 2004
    Inventors: Marie-Claire Cyrille, Frederick H. Dill, Cherngye Hwang, Jui-Lung Li
  • Publication number: 20030029841
    Abstract: Method and apparatus are provided for polishing substrates comprising conductive and low k dielectric materials with reduced or minimum substrate surface damage and delamination. In one aspect, a method is provided for processing a substrate including positioning a substrate having a conductive material formed thereon in a polishing apparatus having one or more rotational carrier heads and one or more rotatable platens, wherein the carrier head comprises a retaining ring and a membrane for securing a substrate and the platen has a polishing article disposed thereon, contacting the substrate surface and the polishing article to each other at a retaining ring contact pressure of about 0.4 psi or greater than a membrane pressure, and polishing the substrate to remove conductive material.
    Type: Application
    Filed: December 18, 2001
    Publication date: February 13, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Yongsik Moon, David Mai, Kapila Wijekoon, Rajeev Bajaj, Rahul Surana, Yongqi Hu, Tony S. Kaushal, Shijian Li, Jui-Lung Li, Shi-Ping Wang, Gary Lam, Fred C. Redeker
  • Publication number: 20030022497
    Abstract: Method and apparatus are provided for polishing conductive materials with low dishing of features and reduced or minimal remaining residues. In one aspect, a method is provided for processing a substrate by polishing the substrate to remove bulk conductive material and polishing the substrate by a ratio of carrier head rotational speed to platen rotational speed of between about 2:1 and about 3:1 to remove residual conductive material. In another aspect, a method is provided for processing a substrate including polishing the substrate at a first relative linear velocity between about 600 mm/second and about 1900 mm/second at the center of the substrate, and polishing the substrate at a second relative linear velocity between about 100 mm/second and about 550 mm/second at the center of the substrate.
    Type: Application
    Filed: July 11, 2002
    Publication date: January 30, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Shijian Li, Jui-Lung Li, Shi-Ping Wang, Gary Lam, David Mai, Fred C. Redeker
  • Publication number: 20020182982
    Abstract: A method and composition for planarizing a substrate. The composition includes a pressure sensitive solution and one or more chemical agents for complexing with a metal or oxidized metal. The method for removal of a copper containing layer from a substrate surface, comprising applying a composition to a polishing media, the composition comprising a pressure sensitive solution, and one or more chemical agents for complexing with a metal or oxidized metal, and polishing the substrate surface with the polishing media.
    Type: Application
    Filed: June 4, 2001
    Publication date: December 5, 2002
    Applicant: Applied Materials, Inc.
    Inventors: Jui-Lung Li, Yuchun Wang, Rajeev Bajaj, Fred C. Redeker
  • Publication number: 20010029155
    Abstract: Methods and apparatuses are provided that may remove the build up of polishing by products from the polishing pad without the reduction in throughput associated with conventional ex-situ conditioning. The conditioning method comprises holding a wafer against a polishing pad with a 0 psi force, and applying a conditioning fluid to the polishing pad while holding the wafer against the polishing pad with a 0 psi force. Thereafter the conditioning fluid may be rinsed from the polishing pad or may remain on the polishing pad while polishing is commenced. The polishing apparatus has a controller programmed to perform the conditioning method.
    Type: Application
    Filed: January 31, 2001
    Publication date: October 11, 2001
    Applicant: Applied Materials, Inc.
    Inventors: Doyle E. Bennett, Yutao Ma, Jui-Lung Li
  • Patent number: 5883040
    Abstract: A process for producing activated carbon from agricultural residues by heating the residues to a temperature in the range of about 250.degree. C. to about 550.degree. C. to volatilize organic compounds in the residues and to carbonize the residues and further heating to activate the carbonized residues. Activated carbon produced from agricultural residues.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: March 16, 1999
    Assignee: The Curators of the University of Missouri
    Inventors: Daniel W. Armstrong, Virgil J. Flanigan, William J. James, Jui-Lung Li, Kimber L. Rundlett