Patents by Inventor Julian Haines

Julian Haines has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10763870
    Abstract: An example clock synthesizer, having a single-phase clock signal as input and generating an output clock, includes a phase decrementer configured to receive a fractional period value, configured to, responsive to the fractional period value, maintain a fractional count, and configured to accumulate residual phase from cycle-to-cycle of the output clock. A clock generator provides an integer-count-zero signal indicative of an integer portion of the fractional count reaching zero. A clock phase selector is configured to provide a signal having a fractional portion of the fractional count. A phase generator and combiner is coupled to an output of the clock generator, and an output of the clock phase selector, and is configured to provide the output clock.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: September 1, 2020
    Assignee: XILINX, INC.
    Inventors: Julian Haines, Rhona Wade
  • Patent number: 8243033
    Abstract: A low-cost x-y digitizing system for use in consumer electronic devices, such as portable digital assistants, mobile telephones, web browsers and the like. The digitizer includes a resonant stylus, an excitation winding for energizing the resonant stylus and a set of sensor windings for sensing the signal generated by the stylus, from which the x-y position of the stylus is determined. A novel stylus design is described together with novel digitizer windings and novel excitation and processing circuitry.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: August 14, 2012
    Assignee: Synaptics (UK) Limited
    Inventors: David T. E. Ely, Geoffrey Foote, Julian Haines, Gareth J. McCaughan
  • Patent number: 7948245
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 24, 2011
    Assignee: Synaptics Incorporated
    Inventors: Kirk Hargreaves, Joseph Kurth Reynolds, David Ely, Julian Haines
  • Patent number: 7902842
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using charge transfer techniques that can be implemented with many standard microcontrollers, and can share components to reduce device complexity and improve performance. In the various implementations of this embodiment, the passive network used to accumulate charge can be shared between multiple measurable capacitances. Likewise, in various implementations a voltage conditioning circuit configured to provide a variable reference voltage can be shared between multiple measurable capacitances. Finally, in various implementations a guarding electrode configured to guard the measurable capacitances can be shared between multiple measurable capacitances. In each of these cases, sharing components can reduce device complexity and improve performance.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: March 8, 2011
    Assignee: Synaptics Incorporated
    Inventors: Joseph Kurth Reynolds, Kirk Hargreaves, David Ely, Paul Routley, Julian Haines
  • Patent number: 7750649
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using charge transfer techniques. According to various embodiments, a charge transfer process is performed for two or more times. During the charge transfer process, a pre-determined voltage is applied to the measurable capacitance, and the measurable capacitance is then allowed to share charge with a filter capacitance through a passive impedance that remains coupled to both the measurable capacitance and to the filter capacitance throughout the charge transfer process. The value of the measurable capacitance can then be determined as a function of a representation of a charge on the filter capacitance and the number of times that the charge transfer process was performed. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to an input sensor.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: July 6, 2010
    Assignee: Synaptics Incorporated
    Inventors: David Ely, Paul Routley, Joseph Kurth Reynolds, Julian Haines, Kirk Hargreaves
  • Publication number: 20100148806
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Application
    Filed: February 18, 2010
    Publication date: June 17, 2010
    Applicant: SYNAPTICS INCORPORATED
    Inventors: Kirk Hargreaves, Joseph Kurth Reynolds, David Ely, Julian Haines
  • Patent number: 7683641
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: March 23, 2010
    Assignee: Synaptics Incorporated
    Inventors: Kirk Hargreaves, Joseph Kurth Reynolds, David Ely, Julian Haines
  • Publication number: 20090184940
    Abstract: A low-cost x-y digitizing system for use in consumer electronic devices, such as portable digital assistants, mobile telephones, web browsers and the like. The digitizer includes a resonant stylus, an excitation winding for energizing the resonant stylus and a set of sensor windings for sensing the signal generated by the stylus, from which the x-y position of the stylus is determined. A novel stylus design is described together with novel digitizer windings and novel excitation and processing circuitry.
    Type: Application
    Filed: March 3, 2009
    Publication date: July 23, 2009
    Applicant: Synaptics (UK) Limited
    Inventors: Christopher J. Silk, David T.E. Ely, Andrew M. Errington, Ian Collins, Geoffrey Foote, Julian Haines, Robert Bolender, Gareth J. McCaughan
  • Publication number: 20090174416
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using charge transfer techniques. According to various embodiments, a charge transfer process is performed for two or more times. During the charge transfer process, a pre-determined voltage is applied to the measurable capacitance, and the measurable capacitance is then allowed to share charge with a filter capacitance through a passive impedance that remains coupled to both the measurable capacitance and to the filter capacitance throughout the charge transfer process. The value of the measurable capacitance can then be determined as a function of a representation of a charge on the filter capacitance and the number of times that the charge transfer process was performed. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to an input sensor.
    Type: Application
    Filed: March 13, 2009
    Publication date: July 9, 2009
    Applicant: SYNAPTICS INCORPORATED
    Inventors: David ELY, Paul ROUTLEY, Joseph Kurth REYNOLDS, Julian HAINES, Kirk HARGREAVES
  • Patent number: 7521941
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using charge transfer techniques. According to various embodiments, a charge transfer process is performed for two or more times. During the charge transfer process, a pre-determined voltage is applied to the measurable capacitance, and the measurable capacitance is then allowed to share charge with a filter capacitance through a passive impedance that remains coupled to both the measurable capacitance and to the filter capacitance throughout the charge transfer process. The value of the measurable capacitance can then be determined as a function of a representation of a charge on the filter capacitance and the number of times that the charge transfer process was performed. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to an input sensor.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: April 21, 2009
    Assignee: Synaptics, Inc.
    Inventors: David Ely, Paul Routley, Joseph Kurth Reynolds, Julian Haines, Kirk Hargreaves
  • Patent number: 7511705
    Abstract: A low cost x-y digitizing system is described for use in consumer electronic devices, such as portable digital assistants, mobile telephones, web browsers and the like. The digitizer includes a resonant stylus, an excitation winding for energizing the resonant stylus and a set of sensor windings for sensing the signal generated by the stylus, from which the x-y position of the stylus is determined. A novel stylus design is described together with novel digitizer windings and novel excitation and processing circuitry.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: March 31, 2009
    Assignee: Synaptics (UK) Limited
    Inventors: Christopher J. Silk, David T. E. Ely, Andrew Errington, Ian Collins, Geoffrey Foote, Julian Haines, Robert J. Bolender, Gareth J. McCaughan
  • Publication number: 20090039902
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Application
    Filed: October 15, 2008
    Publication date: February 12, 2009
    Applicant: SYNAPTICS INCORPORATED
    Inventors: Kirk HARGREAVES, Joseph Kurth REYNOLDS, David ELY, Julian HAINES
  • Patent number: 7453270
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: November 18, 2008
    Assignee: Synaptics Incorporated
    Inventors: Kirk Hargreaves, Joseph Kurth Reynolds, David Ely, Julian Haines
  • Patent number: 7449895
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using charge transfer techniques. According to various embodiments, a charge transfer process is performed for two or more times. During the charge transfer process, a pre-determined voltage is applied to the measurable capacitance, and the measurable capacitance is then allowed to share charge with a filter capacitance through a passive impedance that remains coupled to both the measurable capacitance and to the filter capacitance throughout the charge transfer process. The value of the measurable capacitance can then be determined as a function of a representation of a charge on the filter capacitance and the number of times that the charge transfer process was performed. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to an input sensor.
    Type: Grant
    Filed: June 3, 2006
    Date of Patent: November 11, 2008
    Assignee: Synaptics Incorporated
    Inventors: David Ely, Paul Routley, Joseph Kurth Reynolds, Julian Haines, Kirk Hargreaves
  • Patent number: 7423437
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: September 9, 2008
    Assignee: Synaptics Incorporated
    Inventors: Kirk Hargreaves, Joseph Kurth Reynolds, David Ely, Julian Haines
  • Publication number: 20080116904
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using charge transfer techniques that can be implemented with many standard microcontrollers, and can share components to reduce device complexity and improve performance. In the various implementations of this embodiment, the passive network used to accumulate charge can be shared between multiple measurable capacitances. Likewise, in various implementations a voltage conditioning circuit configured to provide a variable reference voltage can be shared between multiple measurable capacitances. Finally, in various implementations a guarding electrode configured to guard the measurable capacitances can be shared between multiple measurable capacitances. In each of these cases, sharing components can reduce device complexity and improve performance.
    Type: Application
    Filed: October 26, 2007
    Publication date: May 22, 2008
    Applicant: SYNAPTICS INCORPORATED
    Inventors: Joseph Kurth Reynolds, Kirk Hargreaves, David Ely, Paul Routley, Julian Haines
  • Publication number: 20080048679
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Application
    Filed: October 30, 2007
    Publication date: February 28, 2008
    Applicant: SYNAPTICS INCORPORATED
    Inventors: Kirk HARGREAVES, Joseph REYNOLDS, David ELY, Julian HAINES
  • Publication number: 20080048680
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Application
    Filed: October 30, 2007
    Publication date: February 28, 2008
    Applicant: SYNAPTICS INCORPORATED
    Inventors: Kirk HARGREAVES, Joseph REYNOLDS, David ELY, Julian HAINES
  • Publication number: 20080042660
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using charge transfer techniques. According to various embodiments, a charge transfer process is performed for two or more times. During the charge transfer process, a pre-determined voltage is applied to the measurable capacitance, and the measurable capacitance is then allowed to share charge with a filter capacitance through a passive impedance that remains coupled to both the measurable capacitance and to the filter capacitance throughout the charge transfer process. The value of the measurable capacitance can then be determined as a function of a representation of a charge on the filter capacitance and the number of times that the charge transfer process was performed. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to an input sensor.
    Type: Application
    Filed: October 26, 2007
    Publication date: February 21, 2008
    Applicant: SYNAPTICS INCORPORATED
    Inventors: David ELY, Paul ROUTLEY, Joseph REYNOLDS, Julian HAINES, Kirk HARGREAVES
  • Patent number: 7301350
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Grant
    Filed: June 3, 2006
    Date of Patent: November 27, 2007
    Assignee: Synaptics Incorporated
    Inventors: Kirk Hargreaves, Joseph Kurth Reynolds, David Ely, Julian Haines