Patents by Inventor Julian MALINSKI

Julian MALINSKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11539086
    Abstract: Methods and systems for detecting and compensating for expansion of rechargeable batteries over time. An expansion detector may be coupled to or positioned proximate a rechargeable battery to monitor for expansion thereof. After expansion exceeding a selected threshold is detected, the expansion detector may report the expansion to an associated processing unit. The processing unit may undertake to arrest further rechargeable battery expansion by modifying or changing one or more characteristics of charging and/or discharging circuitry coupled to the rechargeable battery. For example, the processing unit may charge the rechargeable battery at a lower rate or with reduced voltage after detecting expansion.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: December 27, 2022
    Assignee: APPLE INC.
    Inventors: Daniel W. Jarvis, David M. DeMuro, Hongli Dai, Julian Malinski, Julien Marcil, Meng Chi Lee, Richard Hung Minh Dinh, Rishabh Bhargava, Steven D. Sterz, Richard M. Mank, Soundararajan Manthiri, Vijayasekaran Boovaragavan
  • Publication number: 20210075068
    Abstract: Methods and systems for detecting and compensating for expansion of rechargeable batteries over time. An expansion detector may be coupled to or positioned proximate a rechargeable battery to monitor for expansion thereof. After expansion exceeding a selected threshold is detected, the expansion detector may report the expansion to an associated processing unit. The processing unit may undertake to arrest further rechargeable battery expansion by modifying or changing one or more characteristics of charging and/or discharging circuitry coupled to the rechargeable battery. For example, the processing unit may charge the rechargeable battery at a lower rate or with reduced voltage after detecting expansion.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 11, 2021
    Inventors: Daniel W. Jarvis, David M. DeMuro, Hongli Dai, Julian Malinski, Julien Marcil, Meng Chi Lee, Richard Hung Minh Dinh, Rishabh Bhargava, Steven D. Sterz, Richard M. Mank, Soundararajan Manthiri, Vijayasekaran Boovaragavan
  • Patent number: 10847846
    Abstract: Methods and systems for detecting and compensating for expansion of rechargeable batteries over time. An expansion detector may be coupled to or positioned proximate a rechargeable battery to monitor for expansion thereof. After expansion exceeding a selected threshold is detected, the expansion detector may report the expansion to an associated processing unit. The processing unit may undertake to arrest further rechargeable battery expansion by modifying or changing one or more characteristics of charging and/or discharging circuitry coupled to the rechargeable battery. For example, the processing unit may charge the rechargeable battery at a lower rate or with reduced voltage after detecting expansion.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: November 24, 2020
    Assignee: APPLE INC.
    Inventors: Daniel W. Jarvis, David M. DeMuro, Hongli Dai, Julian Malinski, Julien Marcil, Meng Chi Lee, Richard Hung Minh Dinh, Rishabh Bhargava, Steven D. Sterz, Richard M. Mank, Soundarajan Manthiri, Vijayasekaran Boovaragavan
  • Publication number: 20180159183
    Abstract: Methods and systems for detecting and compensating for expansion of rechargeable batteries over time. An expansion detector may be coupled to or positioned proximate a rechargeable battery to monitor for expansion thereof. After expansion exceeding a selected threshold is detected, the expansion detector may report the expansion to an associated processing unit. The processing unit may undertake to arrest further rechargeable battery expansion by modifying or changing one or more characteristics of charging and/or discharging circuitry coupled to the rechargeable battery. For example, the processing unit may charge the rechargeable battery at a lower rate or with reduced voltage after detecting expansion.
    Type: Application
    Filed: January 25, 2018
    Publication date: June 7, 2018
    Inventors: Daniel W. Jarvis, David M. DeMuro, Hongli Dai, Julian Malinski, Julien Marcil, Meng Chi Lee, Richard Hung Minh Dinh, Rishabh Bhargava, Steven D. Sterz, Richard M. Mank, Soundarajan Manthiri, Vijayasekaran Boovaragavan
  • Patent number: 9917335
    Abstract: Methods and systems for detecting and compensating for expansion of rechargeable batteries over time. An expansion detector may be coupled to or positioned proximate a rechargeable battery to monitor for expansion thereof. After expansion exceeding a selected threshold is detected, the expansion detector may report the expansion to an associated processing unit. The processing unit may undertake to arrest further rechargeable battery expansion by modifying or changing one or more characteristics of charging and/or discharging circuitry coupled to the rechargeable battery. For example, the processing unit may charge the rechargeable battery at a lower rate or with reduced voltage after detecting expansion.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: March 13, 2018
    Assignee: APPLE INC.
    Inventors: Daniel W. Jarvis, David M. DeMuro, Hongli Dai, Julian Malinski, Julien Marcil, Meng Chi Lee, Richard Hung Minh Dinh, Rishabh Bhargava, Steven D. Sterz, Richard M. Mank, Soundararajan Manthiri, Vijayasekaran Boovaragavan
  • Publication number: 20160093846
    Abstract: An electronic device having a semi-rigid battery pack is disclosed. The semi-rigid battery pack offers an internal power supply with relatively high energy density (energy per volume) with a stiff cover covering the battery pack to shield other internal components from the battery pack. The cover may also be formed with a larger dimension than that of the battery pack such that when the battery pack undergoes a swelling event, the battery pack increases its volume while still be contained by the cover. In this manner, other internal components may be positioned proximate to the cover without being affected by the battery pack. In another embodiment, a mold member covers an outer peripheral portion and supports the battery pack while allowing the battery pack to undergo a swelling event.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: Julian Malinski, Richard Hung Minh Dinh, Daniel W. Jarvis
  • Publication number: 20160064780
    Abstract: Methods and systems for detecting and compensating for expansion of rechargeable batteries over time. An expansion detector may be coupled to or positioned proximate a rechargeable battery to monitor for expansion thereof. After expansion exceeding a selected threshold is detected, the expansion detector may report the expansion to an associated processing unit. The processing unit may undertake to arrest further rechargeable battery expansion by modifying or changing one or more characteristics of charging and/or discharging circuitry coupled to the rechargeable battery. For example, the processing unit may charge the rechargeable battery at a lower rate or with reduced voltage after detecting expansion.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 3, 2016
    Inventors: Daniel W. Jarvis, David M. DeMuro, Hongli Dai, Julian Malinski, Julien Marcil, Meng Chi Lee, Richard Hung Minh Dinh, Rishabh Bhargava, Steven D. Sterz, Richard M. Mank, Soundararajan Manthiri, Vijayasekaran Boovaragavan
  • Publication number: 20150218425
    Abstract: This application relates to adhesives for use in electronic devices. Specifically, the embodiments discussed herein set forth stretch release conductive adhesives for adhering an electrical component to the surface of a housing of a computing device while also allowing current to flow through the electrical component. A stretch release conductive adhesive can include a graspable portion for providing a means to stretch and remove the stretch release conductive adhesive from an electronic device.
    Type: Application
    Filed: September 30, 2014
    Publication date: August 6, 2015
    Inventors: Julian MALINSKI, Richard Hung Minh DINH, Daniel W. JARVIS