Patents by Inventor Julian Pop

Julian Pop has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060226699
    Abstract: Methods and apparatus for investigating a hydrocarbon bearing geological formation traversed by a borehole are disclosed. A borehole tool is used to acquire a sample of fluid in the formation. Compositional analysis of the fluid sample is conducted to provide a determination of the composition of the sample. The sample composition is then related to a model of the thermodynamic behavior of the fluid; i.e., the mass fractions of the fluid components are used as inputs to an equation of state (EOS) to predict the phase behavior of the fluid.
    Type: Application
    Filed: March 24, 2006
    Publication date: October 12, 2006
    Inventors: Soraya Betancourt, Anthony Goodwin, Go Fujisawa, Oliver Mullins, Hani Elshahawi, Julian Pop, Terizhandur Ramakrishnan, Li Jiang
  • Patent number: 7117734
    Abstract: An apparatus and method for determining at least one downhole formation property is disclosed. The apparatus includes a probe and a pretest piston positionable in fluid communication with the formation, and a series of flowlines pressure gauges, and valves configured to selectively draw into the apparatus for measurement of one of formation fluid and mud. The method includes performing a first pretest to determine an estimated formation parameter; using the first pretest to design a second pretest and generate refined formation parameters whereby formation properties may be estimated.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: October 10, 2006
    Assignee: Schlumberger Technology Corporation
    Inventors: Jean-Marc Follini, Julian Pop
  • Patent number: 7081615
    Abstract: Methods and apparatus for investigating a hydrocarbon bearing geological formation traversed by a borehole are disclosed. A borehole tool is used to acquire a sample of fluid in the formation. Compositional analysis of the fluid sample is conducted to provide a determination of the composition of the sample. The sample composition is then related to a model of the thermodynamic behavior of the fluid; i.e., the mass fractions of the fluid components are used as inputs to an equation of state (EOS) to predict the phase behavior of the fluid.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: July 25, 2006
    Assignee: Schlumberger Technology Corporation
    Inventors: Soraya S. Betancourt, Anthony Goodwin, Go Fujisawa, Oliver C. Mullins, Hani Elshahawi, Julian Pop, Terizhandur S. Ramakrishnan, Li Jiang
  • Publication number: 20060137873
    Abstract: A viscometer for a down hole tool positionable in a well bore penetrating a subterranean formation is described. The formation contains at least one fluid therein. The down hole tool is adapted to convey at least a portion of the fluid to the viscometer. The viscometer comprises a sensor unit, and at least one magnet. The sensor unit is positionable within the down hole tool and comprises at least two spatially disposed clamps and a wire suspended in tension between the at least two clamps such that the wire is available for interaction with the fluid when the viscometer is positioned within the down hole tool and the down hole tool is positioned within the subterranean formation and receives the fluid from the subterranean formation.
    Type: Application
    Filed: December 23, 2004
    Publication date: June 29, 2006
    Inventors: Derek Caudwell, Anthony Goodwin, Martin Trusler, Michael Frels, Kai Hsu, Jonathan Brown, Julian Pop, Bunker Hill, Andrew Kurkjian
  • Publication number: 20060101905
    Abstract: A method of sampling fluid from a rock formation penetrated by a borehole includes positioning a downhole tool having a flow line in the borehole, establishing an inlet port through which fluid passes from a first point in the formation into the flow line, establishing an outlet port through which fluid passes from the flow line into a second point in the formation, and passing fluid between the formation and the flow line through the inlet and outlet ports.
    Type: Application
    Filed: November 15, 2005
    Publication date: May 18, 2006
    Inventors: Simon Bittleston, Jonathan Brown, Julian Pop, Ashley Kishino, Christopher Del Campo
  • Patent number: 7036579
    Abstract: An apparatus and method for determining at least one downhole formation property is disclosed. The apparatus includes a probe and a pretest piston positionable in fluid communication with the formation, and a series of flowlines pressure gauges, and valves configured to selectively draw into the apparatus for measurement of one of formation fluid and mud. The method includes performing a first pretest to determine an estimated formation parameter; using the first pretest to design a second pretest and generate refined formation parameters whereby formation properties may be estimated.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: May 2, 2006
    Assignee: Schlumberger Technology Corporation
    Inventors: Jean-Marc Follini, Julian Pop
  • Patent number: 7024930
    Abstract: An apparatus and method for determining at least one downhole formation property is disclosed. The apparatus includes a probe and a pretest piston positionable in fluid communication with the formation, and a series of flowlines pressure gauges, and valves configured to selectively draw into the apparatus for measurement of one of formation fluid and mud. The method includes performing a first pretest to determine an estimated formation parameter; using the first pretest to design a second pretest and generate refined formation parameters whereby formation properties may be estimated.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: April 11, 2006
    Assignee: Schlumberger Technology Corporation
    Inventors: Jean-Marc Follini, Julian Pop
  • Publication number: 20050279499
    Abstract: Methods and apparatuses for sampling fluid from a subterranean formation penetrated by a wellbore are provided. The subterranean formation has clean formation fluid therein, and the wellbore has a contaminated fluid therein extending into an invaded zone about the wellbore. A shaft is extended from a housing and positioned in a perforation in a sidewall of the wellbore. At least one flowline extends through the shaft and into the housing. The flowline(s) are adapted to receive downhole fluids through the perforation. At least one fluid restrictor, such as a packer, injection fluid or flow inhibitor, may be used to isolate at least a portion of the perforation whereby contaminated fluid is prevented from entering the isolated portion of the perforation. At least one pump selectively draws fluid into the flowline(s).
    Type: Application
    Filed: June 18, 2004
    Publication date: December 22, 2005
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Jeffrey Tarvin, Julian Pop, Simon Bittleston, Angus Melbourne, Rogerio Ramos
  • Patent number: 6956204
    Abstract: A method for determining properties of a formation fluid including obtaining data related to an optical density at a methane peak and an optical density at an oil peak for a fluid sample at a plurality of times, calculating an apparent gas-oil-ratio of the sample fluid from the optical density of the fluid sample at the methane peak to the optical density of the fluid sample at the oil peak at each of the plurality of times based on the data, selecting a power function of a sampling parameter for a buildup of the apparent gas-oil-ratio, calculating an exponential constant of the power function based on the data, and determining at least one selected from the group consisting of a contamination free gas-oil-ratio and a percent contamination.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: October 18, 2005
    Assignee: Schlumberger Technology Corporation
    Inventors: Chengli Dong, Peter S. Hageman, Oliver C. Mullins, Go Fujisawa, Soraya S. Betancourt, Julian Pop, Andrew L. Kurkjian, Toru Terabayashi, Hani M. Elshahawi
  • Publication number: 20050187715
    Abstract: An apparatus and method for determining at least one downhole formation property is disclosed. The apparatus includes a probe and a pretest piston positionable in fluid communication with the formation, and a series of flowlines pressure gauges, and valves configured to selectively draw into the apparatus for measurement of one of formation fluid and mud; The method includes performing a first pretest to determine an estimated formation parameter; using the first pretest to design a second pretest and generate refined formation parameters whereby formation properties may be estimated.
    Type: Application
    Filed: November 15, 2004
    Publication date: August 25, 2005
    Inventors: Jean-Marc Follini, Julian Pop
  • Publication number: 20050173113
    Abstract: An apparatus and method for determining at least one downhole formation property is disclosed. The apparatus includes a probe and a pretest piston positionable in fluid communication with the formation, and a series of flowlines pressure gauges, and valves configured to selectively draw into the apparatus for measurement of one of formation fluid and mud. The method includes performing a first pretest to determine an estimated formation parameter; using the first pretest to design a second pretest and generate refined formation parameters whereby formation properties may be estimated.
    Type: Application
    Filed: November 15, 2004
    Publication date: August 11, 2005
    Inventors: Jean-Marc Follini, Julian Pop
  • Publication number: 20050171699
    Abstract: A method for determining formation pressure at a depth region of formations surrounding a borehole, including: keeping track of the time since cessation of drilling at the depth region; deriving formation permeability at the depth region; causing wellbore pressure to vary periodically in time and determining, at the depth region, the periodic and non-periodic component of pressure measured in the formations; determining, using the time, the periodic component and the permeability, the formation pressure diffusivity and transmissibility and an estimate of the size of the pressure build-up zone around the wellbore at the depth region; determining, using the time, the formation pressure diffusivity and transmissibility, and the non-periodic component, the leak-off rate of the mudcake at the depth region; determining, using the leak-off rate, the pressure gradient at the depth region; and extrapolating, using the pressure gradient and the size of the build-up zone, to determine the formation pressure.
    Type: Application
    Filed: January 30, 2004
    Publication date: August 4, 2005
    Inventors: Alexander Zazovsky, Julian Pop, Paul Hammond
  • Publication number: 20050098312
    Abstract: An apparatus and method for determining at least one downhole formation property is disclosed. The apparatus includes a probe and a pretest piston positionable in fluid communication with the formation, and a series of flowlines pressure gauges, and valves configured to selectively draw into the apparatus for measurement of one of formation fluid and mud. The method includes performing a first pretest to determine an estimated formation parameter; using the first pretest to design a second pretest and generate refined formation parameters whereby formation properties may be estimated.
    Type: Application
    Filed: November 15, 2004
    Publication date: May 12, 2005
    Inventors: Jean-Marc Follini, Julian Pop
  • Publication number: 20050087009
    Abstract: An apparatus and method for determining at least one downhole formation property is disclosed. The apparatus includes a probe and a pretest piston positionable in fluid communication with the formation, and a series of flowlines pressure gauges, and valves configured to selectively draw into the apparatus for measurement of one of formation fluid and mud. The method includes performing a first pretest to determine an estimated formation parameter; using the first pretest to design a second pretest and generate refined formation parameters whereby formation properties may be estimated.
    Type: Application
    Filed: November 15, 2004
    Publication date: April 28, 2005
    Inventors: Jean-Marc Follini, Julian Pop
  • Patent number: 6832515
    Abstract: An apparatus and method for determining at least one downhole formation property is disclosed. The apparatus includes a probe and a pretest piston positionable in fluid communication with the formation, and a series of flowlines pressure gauges, and valves configured to selectively draw into the apparatus for measurement of one of formation fluid and mud. The method includes performing a first pretest to determine an estimated formation parameter; using the first pretest to design a second pretest and generate refined formation parameters whereby formation properties may be estimated.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: December 21, 2004
    Assignee: Schlumberger Technology Corporation
    Inventors: Jean-Marc Follini, Julian Pop
  • Publication number: 20040193375
    Abstract: A method for determining properties of a formation fluid including obtaining data related to an optical density at a methane peak and an optical density at an oil peak for a fluid sample at a plurality of times, calculating an apparent gasoilratio of the sample fluid from the optical density of the fluid sample at the methane peak to the optical density of the fluid sample at the oil peak at each of the plurality of times based on the data, selecting a power function of a sampling parameter for a buildup of the apparent gasoilratio, calculating an exponential constant of the power function based on the data, and determining at least one selected from the group consisting of a contamination free gasoilratio and a percent contamination.
    Type: Application
    Filed: March 27, 2003
    Publication date: September 30, 2004
    Inventors: Chengli Dong, Peter S. Hegeman, Oliver C. Mullins, Go Fujisawa, Soraya S. Betancourt, Julian Pop, Andrew L. Kurkjian, Toru Terabayashi, Hani M. Elshahawi
  • Publication number: 20040104341
    Abstract: Methods and apparatus for investigating a hydrocarbon bearing geological formation traversed by a borehole are disclosed. A borehole tool is used to acquire a sample of fluid in the formation. Compositional analysis of the fluid sample is conducted to provide a determination of the composition of the sample. The sample composition is then related to a model of the thermodynamic behavior of the fluid; i.e., the mass fractions of the fluid components are used as inputs to an equation of state (EOS) to predict the phase behavior of the fluid.
    Type: Application
    Filed: December 3, 2002
    Publication date: June 3, 2004
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Soraya S. Betancourt, Anthony Goodwin, Go Fujisawa, Oliver C. Mullins, Hani Elshahawi, Julian Pop, Terizhandur S. Ramakrishnan, Li Jiang
  • Patent number: 6729399
    Abstract: A downhole tool for collecting data from a subsurface formation is disclosed. The tool is provided with a probe for testing and/or sampling an adjacent formation. The tool is also provided with a protector positioned about the probe for engaging and protecting the sidewall of the bore hole surrounding the probe. The protector prevents deterioration of the wellbore during the testing and/or sampling by the probe.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: May 4, 2004
    Assignee: Schlumberger Technology Corporation
    Inventors: Jean-Marc Follini, Julian Pop
  • Patent number: 6710596
    Abstract: The present invention provides methods and apparatus for determining flow velocity within a formation utilizing nuclear magnetic resonance (NMR) techniques in which the shape of the resonance region is restricted so that sensitivity to radial flow or vertical flow is obtained (or both when more than one NMR tool is used). Flow velocity using these NMR tools is determined using decay amplitude, frequency displacement or stimulated echoes (where the spins are stored along the magnetic field instead of the transverse plane to exploit echo decays and frequency displacements) based on the application of adiabatic pulses. Based on the described NMR measurement of flow velocity, additional wellbore parameters may be obtained such as a direct measurement of permeability, an assessment of drilling damage to the wellbore, formation pressure, invasion rate of the mud filtrate or the migration of fine mud particles during sampling operations.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: March 23, 2004
    Assignee: Schlumberger Technology Corporation
    Inventors: Peter Speier, Julian Pop, Martin Poitzsch
  • Publication number: 20040050588
    Abstract: An apparatus and method for determining at least one downhole formation property is disclosed. The apparatus includes a probe and a pretest piston positionable in fluid communication with the formation, and a series of flowlines pressure gauges, and valves configured to selectively draw into the apparatus for measurement of one of formation fluid and mud. The method includes performing a first pretest to determine an estimated formation parameter; using the first pretest to design a second pretest and generate refined formation parameters whereby formation properties may be estimated.
    Type: Application
    Filed: September 9, 2002
    Publication date: March 18, 2004
    Inventors: Jean-Marc Follini, Julian Pop