Patents by Inventor Julian van Thiel

Julian van Thiel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210237702
    Abstract: A control valve (12) for applying a spring-loaded brake pressure (p3b) to spring-loaded parts of a rear-axle wheel brake is provided. The control valve (12) is activatable pneumatically via a second control input (12b) with a parking-brake control pressure (p5). The parking-brake control pressure (p5) can act in such a manner on a control mechanism (14b, 15b, 17c, 22, 23, 24) arranged in a valve housing (12f) of the control valve (12) that a spring-loaded brake pressure (p3b) arises at a control output (12c) of the control valve (12) as a function of the parking-brake control pressure (p5) for bringing about a parking-brake braking specification with the spring-loaded parts of the rear-axle wheel brakes. The control valve (12) has a first control connection (12a) connectable to an adjustable first control chamber (14a), which is operatively connected to the control mechanism (14b, 15b, 17c, 22, 23, 24).
    Type: Application
    Filed: March 29, 2019
    Publication date: August 5, 2021
    Inventors: Peter BEIER, Robert OTREMBA, Julian VAN THIEL
  • Patent number: 11052894
    Abstract: An electronically controllable brake system, in particular electronically controllable pneumatic brake system, for a utility vehicle, in particular utility vehicle, includes: at least one service brake circuit with service brakes and a service brake control module, a service-brake pressure being feedable to the service brakes, the service-brake control module generating a service-brake control signal as a function of a braking specification, the service-brake pressure being generatable as a function of the service-brake control signal and specified to the service brakes, for implementation of the braking specification via the at least one service brake circuit, under electrical control by the service-brake control module; and a parking brake circuit with spring-loaded brakes, a parking-brake brake pressure being feedable to the spring-loaded brakes, the parking-brake brake pressure being generatable as a function of the braking specification and specified to the spring-loaded brakes, in order to implement the
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: July 6, 2021
    Assignee: ZF CV SYSTEMS HANNOVER GMBH
    Inventor: Julian Van Thiel
  • Publication number: 20210197780
    Abstract: A relay valve module for an electronically controllable pneumatic brake system for actuating wheel brakes of a utility vehicle includes: a reservoir connection for receiving a reservoir pressure; a brake control pressure connection for receiving a brake control pressure; at least one first service brake connection for outputting a service brake pressure; a relay valve with a relay valve reservoir connection, which is connected to the reservoir connection, a relay valve working connection, which is connected to the first service brake connection, a relay valve ventilation connection, and a relay valve control connection; an electropneumatic pilot control unit, which is connected to the reservoir connection, the electropneumatic pilot control unit providing a pilot control pressure; and a shuttle valve with a first shuttle valve inlet, a second shuttle valve inlet, and a shuttle valve outlet. The first shuttle valve inlet is connected to the brake control pressure connection.
    Type: Application
    Filed: March 10, 2021
    Publication date: July 1, 2021
    Inventors: Thomas Mueller, Robert Otremba, Julian Van Thiel, Gerd Roters
  • Publication number: 20210162974
    Abstract: An electropneumatic parking brake module includes a supply connection configured to connect a compressed air supply, at least one spring-type actuator connection configured to connect at least one spring brake cylinder, and an inlet-outlet valve unit configured to assume at least a first switching position and a second switching position. The parking brake module further includes an electropneumatic pilot control unit configured to output at least a first control pressure at the inlet-outlet valve unit. In the first switching position of the inlet-outlet valve unit, the spring-type actuator connection is connected to the supply connection for outputting a spring brake pressure, and, in the second switching position of the inlet-outlet valve unit, the spring-type actuator connection is connected to a venting connection of the inlet-outlet valve unit. The inlet-outlet valve unit is in the second switching position when the first control pressure is below a first threshold value.
    Type: Application
    Filed: June 27, 2019
    Publication date: June 3, 2021
    Inventor: Julian Van Thiel
  • Publication number: 20210101576
    Abstract: An electropneumatic brake control module (1) has a supply connection (2) for connecting a compressed air supply (3); a first wheel brake connection (4) and a second wheel brake connection (6); a pneumatically controlled inlet-outlet valve unit (8) for controlling a first brake pressure (PB1) at the first wheel brake connection (4) and a second brake pressure (PB2) at the second wheel brake connection (6), which is independent of the first brake pressure (PB1); and an electropneumatic pilot control unit (10) for controlling at least one main control pressure (PH) at a main valve (12) of the inlet-outlet valve unit (10). The main valve (12) of the inlet-outlet valve unit (10) is a pneumatically controllable 3/2-way valve (13) with a main valve control connection (12.4).
    Type: Application
    Filed: March 22, 2019
    Publication date: April 8, 2021
    Inventors: Julian Van Thiel, Jan Gensink
  • Patent number: 10946848
    Abstract: An electropneumatic parking brake module includes a supply port configured to connect a compressed air supply, a spring brake actuator port configured to connect at least one spring brake cylinder, and a trailer control port, an inlet-outlet valve unit configured to control a spring brake pressure, and an electropneumatic pilot control unit configured to control at least one control pressure at the inlet-outlet valve unit and configured to perform a trailer control position function. The electropneumatic pilot control unit includes a 3/3-way valve that has a first switching position in which the at least one control pressure is controlled, a second switching position in which the trailer control position function is carried out, and a third switching position in which the inlet-outlet valve unit and the trailer control port are connected to a vent.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: March 16, 2021
    Assignee: WABCO GMBH
    Inventor: Julian Van Thiel
  • Publication number: 20210070272
    Abstract: An electropneumatic brake control module (1) for utility vehicles (100) includes a supply port (2) for connecting a compressed air supply (3); a first axle channel port (4); a pneumatically controlled inlet/outlet valve unit (10) for outputting a first braking pressure (PB1) at the first axle channel port (4); and an electropneumatic pilot control unit (8) for outputting at least one first control pressure (P1) at the inlet/outlet valve unit (10). The brake control module (1) further includes a redundancy pressure port (6) for receiving a redundancy pressure (PR) and a redundancy valve unit (12) connected to the redundancy pressure port (6) for outputting a redundancy braking pressure (PBR) at the first axle channel port (4) in the event that the electropneumatic pilot control unit (8) has a fault.
    Type: Application
    Filed: March 25, 2019
    Publication date: March 11, 2021
    Inventor: Julian Van Thiel
  • Publication number: 20210001824
    Abstract: An electropneumatic brake system, for a commercial vehicle which is provided for pulling a trailer, includes at least one service brake circuit configured to activate service brake actuators, a parking brake circuit having parking brake actuators on at least one axle, a trailer brake circuit configured to provide a trailer brake pressure at a trailer brake pressure port, and a manually actuatable operating unit in a driver's cab. The manually actuatable operating unit has a first operating element and a second operating element. In the case of actuation of the first operating element when the vehicle is driving, the parking brake actuators are activated and a trailer brake pressure is output at the trailer brake pressure port. In the case of actuation of the second operating element when the vehicle is driving, only a trailer brake pressure is output.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 7, 2021
    Inventors: Thomas Schmidt, Julian van Thiel
  • Publication number: 20210001828
    Abstract: An electro-pneumatic two-channel axle modulator (1) for utility vehicles has a first supply port (2) for connecting a first compressed air supply (3) and a second supply port (4) for connecting a second compressed air supply (5), a front axle channel port (6), a rear axle channel port (8), an electro-pneumatic front axle valve assembly (10) connected to the first supply port (2) for controlling a front axle brake pressure (pVA) at the front axle channel port (6), and an electro-pneumatic rear axle valve assembly (12) connected to the second supply port (4) for controlling a rear axle brake pressure (pHA) at the rear axle channel port (8). A first redundancy valve assembly (14) is connected to the second supply port (4) for controlling a redundant front axle brake pressure (pVAR) at the front axle channel port (6).
    Type: Application
    Filed: March 22, 2019
    Publication date: January 7, 2021
    Inventor: Julian Van Thiel
  • Publication number: 20200307537
    Abstract: An electropneumatic parking brake module includes a supply port configured to connect a compressed air supply, a spring brake actuator port configured to connect at least one spring brake cylinder, and a trailer control port, an inlet-outlet valve unit configured to control a spring brake pressure, and an electropneumatic pilot control unit configured to control at least one control pressure at the inlet-outlet valve unit and configured to perform a trailer control position function. The electropneumatic pilot control unit includes a 3/3-way valve that has a first switching position in which the at least one control pressure is controlled, a second switching position in which the trailer control position function is carried out, and a third switching position in which the inlet-outlet valve unit and the trailer control port are connected to a vent.
    Type: Application
    Filed: August 30, 2018
    Publication date: October 1, 2020
    Inventor: Julian Van Thiel
  • Publication number: 20200254986
    Abstract: Disclosed is a method for operating a rotational speed sensor comprising a sensor element in a vehicle, wherein the sensor element interacts with a magnet wheel on a wheel of the vehicle and an effective parameter generated by the interaction of the magnet wheel with the sensor element is evaluated in the form of a measurand in an evaluation module and, depending on the measurand, an output variable characterizing the rotational speed of the wheel is output, wherein the sensor element is supplied via the evaluation module with a sensor voltage influencing the measurand. A sensor assembly is also disclosed.
    Type: Application
    Filed: April 19, 2018
    Publication date: August 13, 2020
    Inventors: Andreas GOERS, Julian VAN THIEL, Oliver WULF
  • Publication number: 20200247381
    Abstract: A parking brake valve device for controlling a spring accumulator parking brake in an electro-pneumatic brake system includes a compressed air inlet configured to connect to a compressed air supply. The parking brake valve device also includes an electro-pneumatic handbrake (EPH) valve configuration and a parking brake control outlet configured to connect a spring accumulator parking brake, and a trailer control valve (TCV) device configured to control a trailer control outlet and a trailer supply outlet for a trailer brake system. The parking brake valve device further includes a multiplex switching device connected to the compressed air inlet and having electro-pneumatic switching valves configured to be controlled via electrical control signals for selective compressed air supply and venting of the EPH valve configuration and/or the TCV device.
    Type: Application
    Filed: August 24, 2018
    Publication date: August 6, 2020
    Inventor: Julian Van Thiel
  • Publication number: 20200207319
    Abstract: An electropneumatic trailer supply module, for an electropneumatic parking brake system for a tractor vehicle/trailer combination, includes a supply connection configured to connect a compressed air supply, a trailer supply connection configured to deliver a supply pressure for a trailer vehicle, a pneumatically controlled main valve unit configured to provide the supply pressure to the trailer supply connection, and an electropneumatic pilot control unit configured to select at least a first control pressure at the pneumatically controlled main valve unit. When the first control pressure exceeds a predefined first threshold value of the pneumatically controlled main valve unit, the supply pressure provided to the trailer supply connection can be selected. When the first control pressure falls below the predefined first threshold value of the pneumatically controlled main valve unit, the trailer supply connection is configured to be vented.
    Type: Application
    Filed: May 29, 2018
    Publication date: July 2, 2020
    Inventor: Julian Van Thiel
  • Publication number: 20200189545
    Abstract: An electropneumatic parking brake module (1) includes a supply connection (2), a spring-type actuator connection (4), an inlet-outlet valve unit (10) having a first switching position and a second switching position, and an electropneumatic pilot control unit (12) for outputting at least a first control pressure (p1) at the inlet-outlet valve unit (10). In the first switching position of the inlet-outlet valve unit (10), a spring brake pressure (pF) can be fed through directly from the supply connection (2) to the spring-type actuator connection (4) by virtue of the fact that the spring-type actuator connection (4) is connected to the supply connection (2), and, in the second switching position of the inlet-outlet valve unit (10), when the first control pressure (p1) is below a first threshold value, the spring-type actuator connection (4) is connected to a ventilating connection (14.3) of the inlet-outlet valve unit (10).
    Type: Application
    Filed: May 29, 2018
    Publication date: June 18, 2020
    Inventors: Uwe Bensch, Julian Van Thiel
  • Publication number: 20200189550
    Abstract: A parking brake valve device for controlling a storage spring parking brake in an electropneumatic brake system includes a compressed air input configured to be connected to a compressed air supply, a parking brake output configured to control a storage spring parking brake, and a trailer-control control output configured to control a trailer control valve (TCV) for a trailer brake system. The parking brake valve device further includes a relay valve pilot control region and a relay valve, a TCV pilot control region configured to control the trailer-control control output, an inlet valve configured to be controlled with a first electrical control signal for supplying air to the TCV pilot control region and the relay valve pilot control region, and a connecting valve configured to be controlled by a second control signal to connect and disconnect the TCV pilot control region and the relay valve pilot control region.
    Type: Application
    Filed: May 29, 2018
    Publication date: June 18, 2020
    Inventor: Julian van Thiel
  • Publication number: 20200156601
    Abstract: A method is provided for decelerating a vehicle. The vehicle has an electro-pneumatic brake system, at least one front axle, at least one rear axle, and a brake value transmitter. The vehicle further includes at least one axle modulator for the front axle of the vehicle, for performing control of at least one front axle brake pressure at the at least one front axle, and/or at least one axle modulator for the rear axle of the vehicle, for performing control of a rear axle brake pressure at the at least one rear axle of the vehicle. The method includes generating a redundancy signal at a first axle, the front axle or rear axle, or at a trailer control valve, and performing open-loop and/or closed-loop control of an auxiliary brake pressure at another axle, the front axle or the rear axle, via the redundancy signal.
    Type: Application
    Filed: May 31, 2018
    Publication date: May 21, 2020
    Inventors: Andreas Goers, Christoph Brockmann, Julian Van Thiel
  • Publication number: 20200148180
    Abstract: An electronically controllable pneumatic brake system includes a service brake control module for controlling a first and a second service brake circuit, and a trailer control module with a trailer brake pressure connection point for connection to a trailer brake pressure coupling head. The trailer control module outputs a trailer brake pressure via the trailer brake pressure connection point. Upon a malfunction of the first and/or second service brake circuit, the first service brake pressure is controlled depending on the trailer brake pressure; and the second service brake pressure is controlled depending on the trailer brake pressure specified by the trailer control module; and/or the parking brake pressure is controlled directly or depending on the trailer brake pressure specified by the trailer control module. Upon a malfunction of the trailer control module, the trailer brake pressure is controlled depending on the first service brake pressure.
    Type: Application
    Filed: March 20, 2018
    Publication date: May 14, 2020
    Inventor: Julian Van Thiel
  • Publication number: 20200139952
    Abstract: An electropneumatic control module for an electronically controllable pneumatic brake system for a vehicle combination with a tractor vehicle and a trailer vehicle includes a pneumatic reservoir input, which is connectable to a compressed-air reservoir, a trailer control unit, which has a trailer control valve unit with one or more electropneumatic valves, a trailer brake pressure port and a trailer supply pressure port, an immobilizing brake unit, which has a spring-type actuator port for a spring-type actuator for a tractor vehicle and an immobilizing brake valve unit with one or more electropneumatic valves, and an electronic control unit for controlling the trailer control valve unit and the immobilizing brake valve unit. The trailer control unit has a first relay valve, which has a relay valve working input connected to the reservoir input, a relay valve output connected to the trailer brake pressure port, and a relay valve ventilation output.
    Type: Application
    Filed: March 20, 2018
    Publication date: May 7, 2020
    Inventor: Julian Van Thiel
  • Publication number: 20200086843
    Abstract: An electropneumatic trailer control-valve unit for a vehicle includes a storage port for coupling a store of compressed air for a trailer, a brake-pressure port, and a brake-pressure pilot-control unit configured to output at least one first control pressure. The electropneumatic trailer control-valve unit further includes a brake-pressure main-valve unit configured to receive the first control pressure and to output a brake pressure at a brake-pressure port, a trailer operating-pressure port configured to receive a trailer operating pressure; and a pneumatically switched trailer protection valve with a protection-valve control port which is connected to the trailer operating-pressure port for receiving the trailer operating pressure. The trailer protection valve switches from a first switching position into a second switching position if the trailer operating pressure exceeds a predetermined first threshold value.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 19, 2020
    Inventor: Julian van Thiel
  • Publication number: 20200079341
    Abstract: An electropneumatic control module for an electronically controllable pneumatic brake system for a vehicle combination with a tractor vehicle and a trailer vehicle includes a pneumatic reservoir input, which is connectable to a compressed-air reservoir, and a trailer control unit, which has a trailer control valve unit with one or more electropneumatic valves, a trailer brake pressure port and a trailer supply pressure port. The electropneumatic control module further includes an immobilizing brake unit, which has a spring-type actuator port for at least one spring-type actuator for a tractor vehicle and an immobilizing brake valve unit with one or more electropneumatic valves, and an electronic control unit, wherein the electronic control unit is designed to, based on an electronic immobilizing signal, trigger the immobilizing brake valve unit to switch at least one valve of the immobilizing brake valve unit.
    Type: Application
    Filed: March 21, 2018
    Publication date: March 12, 2020
    Inventor: Julian VAN THIEL