Patents by Inventor Jun Akedo

Jun Akedo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7658996
    Abstract: A method for forming an ultrafine particle brittle material at low temperature which includes the steps of applying a mechanical impact force or a pressure to a ultrafine particle brittle material so as to have a percentage in the ultrafine particles having a primary particle diameter less than 50 nm in all the particles of 10 to 90%, subjecting the resulting brittle material to a heat treatment at a temperature not higher than the sintering temperature thereof so as to have the above percentage of 50% or less, and then applying a mechanical impact force not less than the crushing strength to the resultant material, to crush the material, thereby joining the ultrafine particles in the brittle material with one another, to form a formed article of the ultrafine particle brittle material; and an ultrafine particle brittle material for use in the method.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: February 9, 2010
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Jun Akedo, Maxim Lebedev
  • Publication number: 20100014140
    Abstract: An optical scanning device of the invention includes: a substrate main body; two cantilever beam portions which protrude from both-side portions of one side of the substrate main body; a mirror portion whose both-sides are supported by torsion bar portions between the cantilever beam portions; a drive source which causes the substrate main body to oscillate; and a light source which projects light onto the mirror portion, where the mirror portion resonates and vibrates in accordance with a vibration imparted to a substrate by the drive source, and a direction of reflection light from the light projected onto the mirror portion from the light source changes in accordance with the vibration of the mirror portion, and where a fixed end portion of the substrate main body which is located on the opposite side thereof from the mirror portion side is fixed to a supporting component, and the drive source is provided on a portion of the substrate main body.
    Type: Application
    Filed: September 26, 2007
    Publication date: January 21, 2010
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Jun Akedo, Harumichi Sato, Jaehyuk Park
  • Publication number: 20100014142
    Abstract: An optical scanning device of the invention includes: a substrate; a torsion bar portion which is connected to the substrate; a mirror portion which is supported by the torsion bar portion; a drive source which causes the substrate to oscillate; and a light source which projects light onto the mirror portion, where the mirror portion resonates and vibrates in accordance with a vibration imparted to the substrate by the drive source, a direction of reflection light from the light projected onto the mirror portion from the light source changes in accordance with the vibration of the mirror portion, the drive source is provided on a portion of the substrate at a distance from a connected portion where the substrate is connected to the torsion bar portion, and a substrate shape control device which controls the shape of the substrate itself is provided on the substrate.
    Type: Application
    Filed: September 26, 2007
    Publication date: January 21, 2010
    Inventors: Jun Akedo, Jaehyuk Park, Harumichi Sato
  • Patent number: 7649139
    Abstract: The present invention provides a thermoelectric element in which a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material, which are formed on an electrically insulating substrate, are electrically connected, in which the p-type thermoelectric material and the n-type thermoelectric material are selected from specific complex oxides with a positive Seebeck coefficient and specific complex oxides with a negative Seebeck coefficient, respectively. The present invention also provides a thermoelectric module using the thermoelectric element(s) and a thermoelectric conversion method. In the thermoelectric element of the present invention, since a p-type thermoelectric material and an n-type thermoelectric material are formed into a thin film on an electrically insulating substrate, the thermoelectric element of the invention can be formed on substrates having various shapes, thereby providing thermoelectric elements having various shapes.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: January 19, 2010
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Toshiyuki Mihara, Ryoji Funahashi, Jun Akedo, Sou Baba, Masashi Mikami
  • Publication number: 20090310903
    Abstract: In a compact formed by subjecting an ultrafine particle brittle material supplied on a substrate to mechanical impact force as a load, whereby the ultrafine particle brittle material is crushed and joined to each other, manganese is added into the ultrafine particle brittle material to form the compact.
    Type: Application
    Filed: January 19, 2007
    Publication date: December 17, 2009
    Inventors: Masafumi Nakada, Jun Akedo
  • Patent number: 7632353
    Abstract: An apparatus for manufacturing a composite structure body is provided which forms structure body having the constitution in which the crystals of more than one type of brittle material are dispersed and having novel properties without involving a heating/sintering process. The apparatus includes an aerosol generator configured to generate an aerosol. The aerosol is generated through dispersing fine particles of more than one type of brittle material, or dispersing composite fine particles, in a gas. The apparatus also includes a nozzle configured to spray the aerosol, a classifier configured to classify the brittle material fine particles in the aerosol, and a disintegrating machine for disintegrating agglomerations of the brittle material fine particles in the aerosol. The composite structure body is manufactured in reduced pressure conditions by bombarding a substrate with the aerosol at a high velocity, whereby at least one of crystals and microstructures of said brittle materials are dispersed.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: December 15, 2009
    Assignees: Toto Ltd., National Institute of Advanced Industrial Science and Technology
    Inventors: Hironori Hatono, Masakatsu Kiyohara, Katsuhiko Mori, Tatsuro Yokoyama, Atsushi Yoshida, Tomokazu Ito, Jun Akedo
  • Patent number: 7579251
    Abstract: A circuit substrate includes a passive element and an interconnection pattern, wherein any of the passive element and the interconnection pattern is formed by an aerosol deposition process that uses aerosol of a fine particle material.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: August 25, 2009
    Assignees: Fujitsu Limited, National Institute of Advanced Industrial Science And Technology
    Inventors: Yoshihiko Imanaka, Jun Akedo, Maxim Lebedev
  • Patent number: 7565723
    Abstract: A piezoelectric material layer is easily formed on a partial region of the substrate surface. By forming a different hardness material layer that has a different hardness from that of the substrate in the form of a pattern on the surface of the substrate, a film-deposition permitting region A to which particles of a piezoelectric material in a carrier gas adhere in a form of a film and a film-deposition inhibiting region B which inhibits the formation of a film are provided. Further, when a carrier gas containing particles of a piezoelectric material are ejected onto the surface of the substrate by means of AD, a film-like piezoelectric material layer is formed as a result of the adhesion of the particles in the film-deposition permitting region A. As a result, the piezoelectric material layer can be formed easily in a partial region of the surface of the substrate.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: July 28, 2009
    Assignees: Brother Kogyo Kabushik Kaisha, National Institute of Advanced Industrial Science and Technology
    Inventors: Hiroto Sugahara, Kazuo Kobayashi, Motohiro Yasui, Jun Akedo, Sou Baba
  • Patent number: 7553376
    Abstract: A composite structure forming apparatus adapted to ejecting and causing an aerosol generated by scattering brittle material fine particles in a gas to collide with a substrate at high speed to form a structure made of the brittle material. The apparatus includes an aerosol generator for generating the aerosol, a nozzle for ejecting the aerosol, a shredder for shredding the brittle particles cohering in the aerosol and preventing cohesion of the brittle material fine particles, and a classifier for classifying the brittle material fine particles in the aerosol. The apparatus also includes a pretreatment device for creating internal strain in the brittle material fine particles, and a position control device for controlling the position of the nozzle relative to the substrate. The apparatus further includes a container having a sieve and a vibration device, and one or more of these components may be associated with the aerosol generator.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: June 30, 2009
    Assignees: Toto Ltd., National Institute of Advanced Industrial Science & Technology
    Inventors: Jun Akedo, Tomokazu Ito, Tatsuro Yokoyama, Katsuhiko Mori, Hironori Hatono, Masakatsu Kiyohara, Yuji Aso
  • Patent number: 7547359
    Abstract: An aerosol of a powder composed of helium carrier gas and particles of a hexagonal aluminum nitride is charged through a transfer pipe 3 into a film deposition chamber 4 whose interior is depressurized by gas evacuation using a vacuum pump 5 to maintain a degree of vacuum of 200-8000 Pa during supply of the carrier gas and the aerosol is blown from a nozzle 6 provided on the end of the transfer pipe 3 inside the film deposition chamber 4 to impinge on a substrate fastened to a substrate holder 7 to make the impact force of the particles at collision with the substrate 4 GPa or greater, thereby transforming the crystal structure of the aluminum nitride from hexagonal to cubic to deposit cubic aluminum nitride on the substrate.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: June 16, 2009
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Atsushi Iwata, Jun Akedo
  • Patent number: 7506441
    Abstract: The present invention provides a simple method using aerosol deposition, for manufacturing a piezoelectric film that will simultaneously satisfy various characteristics required of a piezoelectric film. In the method, the piezoelectric film is formed on a substrate by ejecting an aerosol containing particles of a piezoelectric material onto the substrate so that the particles adhere thereto, and a second piezoelectric layer is formed on the first piezoelectric layer by conducting the ejection such that energy used for crushing the particles when the particles collide with the substrate is less than in the formation of the first piezoelectric film.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: March 24, 2009
    Assignees: Brother Kogyo Kabushiki Kaisha, National Institute of Advanced Industrial Science and Technology
    Inventors: Motohiro Yasui, Jun Akedo
  • Publication number: 20080241556
    Abstract: A composite structure forming method comprises the steps of first pre-treating brittle material fine particles to impart an internal strain to the brittle material fine particles, secondly causing the brittle material fine particles in which the internal strain has been created to collide with a substrate surface at high speed or applying a mechanical impact force to the brittle material fine particles containing the internal strain therein provided on the substrate surface, to deform or fracture the brittle material fine particles, re-joining the fine particles through active new surfaces generated by the deformation or fracture, forming an anchor section made of polycrystalline brittle material of which part bites into the substrate surface at a boundary section between the new surfaces and the substrate, and further forming a structure made of polycrystalline brittle material on the anchor section.
    Type: Application
    Filed: October 31, 2007
    Publication date: October 2, 2008
    Applicants: Toto Ltd., National Institute Of Advanced Industrial Science And Technology
    Inventors: Jun Akedo, Tomokadsu Ito, Tatsuro Yokoyama, Katsuhiko Mori, Hironori Hatono, Masakatsu Kiyohara, Yuji Aso
  • Publication number: 20080220962
    Abstract: A method for forming an ultrafine particle brittle material at low temperature which includes the steps of applying a mechanical impact force or a pressure to a ultrafine particle brittle material so as to have a percentage in the ultrafine particles having a primary particle diameter less than 50 nm in all the particles of 10 to 90%, subjecting the resulting brittle material to a heat treatment at a temperature not higher than the sintering temperature thereof so as to have the above percentage of 50% or less, and then applying a mechanical impact force not less than the crushing strength to the resultant material, to crush the material, thereby joining the ultrafine particles in the brittle material with one another, to form a formed article of the ultrafine particle brittle material; and an ultrafine particle brittle material for use in the method.
    Type: Application
    Filed: August 6, 2007
    Publication date: September 11, 2008
    Inventors: Jun Akedo, Maxim Lebedev
  • Publication number: 20080166476
    Abstract: A method of forming a room-temperature deposited and transparent magneto-optic layer includes depositing a transparent magnetic nanocomposite layer with embedded nanomagnetic particles in matrix onto substrates by aerosol deposition method at room-temperature.
    Type: Application
    Filed: December 19, 2007
    Publication date: July 10, 2008
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Jun AKEDO, Jaehyuk Park
  • Patent number: 7394583
    Abstract: A light-beam scanning device includes a base plate having a torsion beam portion formed therein, and a mirror portion supported by the torsion beam portion and adapted to be oscillated. The light-beam scanning device includes one of a piezoelectric member, a magnetostrictive member and a permanent magnet member, which is fixed to or formed as a portion of the base plate. The mirror portion supported by the torsion beam portion is oscillated by a plate wave that is induced in the base plate by applying a voltage or electric field to the piezoelectric, magnetostrictive or permanent magnet member. The light-beam scanning device can efficiently generate a torsional oscillation in the mirror portion in a simplified structure.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: July 1, 2008
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Jun Akedo, Lebedev Maxim
  • Publication number: 20080096007
    Abstract: A composite structure body obtained through a plurality of processes including forming composite fine particles by way of a process in which a surface of the fine particles of a brittle material is coated with another brittle material; then by bombarding the composite fine particles against a surface of a substrate at high velocities, an anchor portion biting the substrate surface is formed; the composite fine particles are simultaneously distorted and fractured by impact of the bombardment; mutual rejoining of the composite fine particles is made through intermediary of a newly generated active surface formed by the distortion or fracture; and thereby forming a structure body in which crystals and/or microstructures of the brittle materials are dispersed above the anchor portion; and a pre-processing which includes imparting internal distortion to the brittle material fine particles.
    Type: Application
    Filed: October 31, 2007
    Publication date: April 24, 2008
    Applicants: Toto Ltd., National Institute Of Advanced Industrial Science And Technology
    Inventors: Hironori Hatono, Masakatsu Kiyohara, Katsuhiko Mori, Tatsuro Yokoyama, Atsushi Yoshida, Tomokazu Ito, Jun Akedo
  • Publication number: 20080081180
    Abstract: The present invention provides a composite structure body obtained through processes of forming composite fine particles by way of a process in which a surface of brittle material fine particles is coated with at least one type of ductile material, bombarding the composite fine particles at a high velocity against a surface of a substrate, mutual rejoining of the composite fine particles is made through intermediary of a newly generated active surface formed by distortion or fracture, and thereby forming a structure body, above an anchor portion, in which crystals of the brittle material and crystals and/or microstructures of the ductile material fine particles are dispersed, and imparting internal distortion to the brittle material fine particles.
    Type: Application
    Filed: October 31, 2007
    Publication date: April 3, 2008
    Applicants: Toto Ltd., National Institute of Advanced Industrial Science And Technology
    Inventors: Hironori Hatono, Masakatsu Kiyohara, Katsuhiko Mori, Tatsuro Yokoyama, Atsushi Yoshida, Tomokazu Ito, Jun Akedo
  • Patent number: 7338724
    Abstract: The present invention provides a composite structure body obtained through processes of forming composite fine particles by way of a process in which a surface of brittle material fine particles is coated with at least one type of ductile material, bombarding the composite fine particles at a high velocity against a surface of a substrate, mutual rejoining of the composite fine particles is made through intermediary of a newly generated active surface formed by distortion or fracture, and thereby forming a structure body, above an anchor portion, in which crystals of the brittle material and crystals and/or microstructures of the ductile material fine particles are dispersed, and imparting internal distortion to the brittle material fine particles.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: March 4, 2008
    Assignees: Toto Ltd., National Institute of Advanced Industrial Science and Technology
    Inventors: Hironori Hatono, Masakatsu Kiyohara, Katsuhiko Mori, Tatsuro Yokoyama, Atsushi Yoshida, Tomokazu Ito, Jun Akedo
  • Patent number: 7318967
    Abstract: A composite structure body obtained through a plurality of processes including forming composite fine particles by way of a process in which a surface of the fine particles of a brittle material is coated with another brittle material; then by bombarding the composite fine particles against a surface of a substrate at high velocities, an anchor portion biting the substrate surface is formed; the composite fine particles are simultaneously distorted and fractured by impact of the bombardment; mutual rejoining of the composite fine particles is made through intermediary of a newly generated active surface formed by the distortion or fracture; and thereby forming a structure body in which crystals and/or microstructures of the brittle materials are dispersed above the anchor portion; and a pre-processing which includes imparting internal distortion to the brittle material fine particles.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: January 15, 2008
    Assignees: Toto Ltd., National Institute of Advanced Industrial Science and Technology
    Inventors: Hironori Hatono, Masakatsu Kiyohara, Katsuhiko Mori, Tatsuro Yokoyama, Atsushi Yoshida, Tomokazu Ito, Jun Akedo
  • Publication number: 20080003458
    Abstract: An aerosol of a powder composed of helium carrier gas and particles of a hexagonal aluminum nitride is charged through a transfer pipe 3 into a film deposition chamber 4 whose interior is depressurized by gas evacuation using a vacuum pump 5 to maintain a degree of vacuum of 200-8000 Pa during supply of the carrier gas and the aerosol is blown from a nozzle 6 provided on the end of the transfer pipe 3 inside the film deposition chamber 4 to impinge on a substrate fastened to a substrate holder 7 to make the impact force of the particles at collision with the substrate 4 GPa or greater, thereby transforming the crystal structure of the aluminum nitride from hexagonal to cubic to deposit cubic aluminum nitride on the substrate.
    Type: Application
    Filed: May 22, 2006
    Publication date: January 3, 2008
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Atsushi IWATA, Jun AKEDO