Patents by Inventor Jun Muk Lim

Jun Muk Lim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11920783
    Abstract: A flame port unit structure of a combustion apparatus provided with a plurality of flame ports for forming a flame comprises: a lean flame port unit, as a flame port for jetting lean gas, including a plurality of lean flame ports arranged along a width direction which is perpendicular to the jetting direction of the lean gas; and a rich flame port unit, as a flame port for jetting rich gas, including a pair of rich flame ports provided on both sides of the lean flame port unit with respect to a width direction, wherein the lean flame port unit comprises a first region in which a gap along the width direction of the lean flame port is formed along a longitudinal direction which is perpendicular to the jetting direction and the width direction, and a second region, provided on both sides along the longitudinal direction of the first region.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: March 5, 2024
    Assignee: KYUNGDONG NAVIEN CO., LTD
    Inventors: Jun Kyu Park, Sang Hyun Nam, Hyun Muk Lim, Whee Jun Lim
  • Patent number: 11837376
    Abstract: A method for producing a composite conductive material having excellent dispersibility is provided. The method includes supporting a catalyst on surfaces of carbon particles; heat treating the catalyst in a helium or hydrogen atmosphere such that the catalyst penetrate the surfaces of the carbon particles and are impregnated beneath the surfaces of the carbon particles at a contact point between the carbon particles and the impregnated catalyst; and heating the carbon particles having the impregnated catalyst disposed therein in the presence of a source gas to grow carbon nanofibers from the impregnated catalyst to form a composite conductive material, wherein the source gas contains a carbon source, and wherein the carbon nanofibers extend from the contact point to above the surfaces of the carbon particles.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: December 5, 2023
    Inventors: Tea Gon Kim, Je Young Kim, Hak Yoon Kim, Ki Won Sung, Ye Lin Kim, Joo Yul Baek, Jung Keun Yoo, Jun Muk Lim, Seul Ki Kim
  • Patent number: 11817585
    Abstract: A positive electrode includes: a current collector; and a positive electrode active material layer disposed on the current collector, wherein the positive electrode active material layer includes a positive electrode active material, a conductive material, and a binder, the conductive material contains at least one of carbon black or a carbon nanotube and the binder contains polyvinylidene fluoride to which a functional group is bonded, and the functional group has a carboxyl group, and in the polyvinylidene fluoride to which the functional group is bonded.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: November 14, 2023
    Inventors: Jun Muk Lim, Joo Yul Baek, Sang Hoon Choy
  • Patent number: 11631857
    Abstract: A secondary battery includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte solution, wherein the positive electrode includes a current collector and a positive electrode active material layer disposed on the current collector, the positive electrode active material layer includes a positive electrode active material and carbon nanotubes, and the electrolyte solution includes a non-aqueous solvent, a lithium salt, and tetravinylsilane.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: April 18, 2023
    Inventors: Joo Yul Baek, Young Min Lim, Jun Muk Lim, Sang Hoon Choy, Chul Haeng Lee
  • Patent number: 11594728
    Abstract: A positive electrode includes a positive electrode active material layer including a positive electrode active material, a conductive material, and a binder, wherein the positive electrode active material contains any one among Li(Nix1Mny1Coz1)O2 (0.55<x1<0.69, 0.15<y1<0.29, 0.15<z1<0.29, x1+y1+z1=1) and Li(Nix2Mny2Coz2)O2 (0.75<x2<0.89, 0.05<y2<0.19, 0.05<z2<0.19, x2+y2+z2=1) and the conductive material contains a carbon nanotube, and when the positive electrode active material is Li(Nix2Mny2Coz2)O2, the positive electrode active material layer satisfies Relation 1 and when the positive electrode active material is Li(Nix2Mny2Coz2)O2, the positive electrode active material layer satisfies Relation 2: 0.0020×a<b<0.0050×a??[Relation 1] 0.0015×a<b<0.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: February 28, 2023
    Inventors: Joo Yul Baek, Jun Muk Lim, Hyun Sik Chae, Sang Hoon Choy
  • Publication number: 20220200075
    Abstract: Provided are a reuse method of electrode scrap and a method of fabricating a recycled electrode using the same. The reuse method of electrode scrap of the present disclosure includes (a) dry milling electrode scrap remaining after punching an electrode sheet including an active material layer on a current collector to obtain milled products; and (b) screening active material layer flakes from current collector fragments in the milled products by sieving the milled products, and collecting the screened active material layer flakes to obtain reusable particles.
    Type: Application
    Filed: July 14, 2020
    Publication date: June 23, 2022
    Applicant: LG ENERGY SOLUTION, LTD.
    Inventors: Jun-Muk LIM, Joo-Yul BAEK, Hee-Seok SONG, Seong-Keun JANG, Woo-Ha KIM, Sang-Hoon CHOY
  • Publication number: 20210151753
    Abstract: A positive electrode includes a positive electrode active material layer including a positive electrode active material, a conductive material, and a binder, wherein the positive electrode active material contains any one among Li(Nix1MnylCoz1)O2 (0.55<x1<0.69, 0.15<y1<0.29, 0.15<z1<0.29, x1+y1+z1=1) and Li(Nix2Mny2Coz2)O2 (0.75<x2<0.89, 0.05<y2<0.19, 0.05<z2<0.19, x2+y2+z2=1) and the conductive material contains a carbon nanotube, and when the positive electrode active material is Li(Nix2Mny2Coz2)O2, the positive electrode active material layer satisfies Relation 1 and when the positive electrode active material is Li(Nix2Mny2Coz2)O2, the positive electrode active material layer satisfies Relation 2: 0.0020×a<b<0.0050×a??[Relation 1] 0.0015×a<b<0.
    Type: Application
    Filed: January 21, 2019
    Publication date: May 20, 2021
    Applicant: LG Chem, Ltd.
    Inventors: Joo Yul Baek, Jun Muk Lim, Hyun Sik Chae, Sang Hoon Choy
  • Publication number: 20210104338
    Abstract: A method for producing a composite conductive material having excellent dispersibility is provided. The method includes supporting a catalyst on surfaces of carbon particles; heat treating the catalyst in a helium or hydrogen atmosphere such that the catalyst penetrate the surfaces of the carbon particles and are impregnated beneath the surfaces of the carbon particles at a contact point between the carbon particles and the impregnated catalyst; and heating the carbon particles having the impregnated catalyst disposed therein in the presence of a source gas to grow carbon nanofibers from the impregnated catalyst to form a composite conductive material, wherein the source gas contains a carbon source, and wherein the carbon nanofibers extend from the contact point to above the surfaces of the carbon particles.
    Type: Application
    Filed: December 9, 2020
    Publication date: April 8, 2021
    Applicant: LG Chem, Ltd.
    Inventors: Tea Gon Kim, Je Young Kim, Hak Yoon Kim, Ki Won Sung, Ye Lin Kim, Joo Yul Baek, Jung Keun Yoo, Jun Muk Lim, Seul Ki Kim
  • Publication number: 20210083336
    Abstract: The present invention relates to a method of reusing a positive electrode material, and more particularly, the method includes: inputting a positive electrode for a lithium secondary battery comprising a current collector, and a positive electrode active material layer formed on the current collector and including a first positive electrode active material, a first binder and a first conducting agent, into a solvent; separating at least a portion of the positive electrode active material layer from the current collector; adding second binder powder to the solvent and performing primary mixing a resulting mixture; and preparing a positive electrode material slurry by adding a second positive electrode active material and a second conducting agent to the solvent and performing secondary mixing a resulting mixture.
    Type: Application
    Filed: May 8, 2019
    Publication date: March 18, 2021
    Applicant: LG CHEM, LTD.
    Inventors: Joo Yul BAEK, Woo Ha KIM, In Seong KIM, Jun Muk LIM, Sang Hoon CHOY
  • Publication number: 20210057749
    Abstract: A positive electrode includes: a current collector; and a positive electrode active material layer disposed on the current collector, wherein the positive electrode active material layer includes a positive electrode active material, a conductive material, and a binder, the conductive material contains at least one of carbon black or a carbon nanotube and the binder contains polyvinylidene fluoride to which a functional group is bonded, and the functional group has a carboxyl group, and in the polyvinylidene fluoride to which the functional group is bonded.
    Type: Application
    Filed: February 22, 2019
    Publication date: February 25, 2021
    Applicant: LG Chem, Ltd.
    Inventors: Jun Muk Lim, Joo Yul Baek, Sang Hoon Choy
  • Patent number: 10902968
    Abstract: The present invention provides a composite conductive material having excellent dispersibility and a method for producing the same. In an embodiment, the method includes supporting a catalyst on surfaces of carbon particles; heat treating the catalyst in a helium or hydrogen atmosphere such that the catalyst penetrate the surfaces of the carbon particles and are impregnated beneath the surfaces of the carbon particles at a contact point between the carbon particles and the impregnated catalyst; and heating the carbon particles having the impregnated catalyst disposed therein in the presence of a source gas to grow carbon nanofibers from the impregnated catalyst to form a composite conductive material, wherein the source gas contains a carbon source, and wherein the carbon nanofibers extend from the contact point to above the surfaces of the carbon particles.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: January 26, 2021
    Inventors: Tea Gon Kim, Je Young Kim, Hak Yoon Kim, Ki Won Sung, Ye Lin Kim, Joo Yul Baek, Jung Keun Yoo, Jun Muk Lim, Seul Ki Kim
  • Publication number: 20200373559
    Abstract: A positive electrode includes a current collector and a positive electrode active material layer disposed on the current collector, wherein the positive electrode active material layer includes a positive electrode active material, carbon nanotube, and a binder, the binder includes polyvinylidene fluoride which has a weight average molecular weight of 720,000 g/mol to 980,000 g/mol, a BET specific surface area of the carbon nanotube is 140 m2/g to 195 m2/g, and the positive electrode satisfies the following Formula 1: 1.3?B/A?3.4??[Formula 1] in Formula 1, B is an amount (wt %) of the polyvinylidene fluoride in the positive electrode active material layer, and A is an amount (wt %) of the carbon nanotube in the positive electrode active material layer.
    Type: Application
    Filed: February 19, 2019
    Publication date: November 26, 2020
    Applicant: LG Chem, Ltd.
    Inventors: Joo Yul Baek, Jun Muk Lim, Chang Ju Lee, Il Geun Oh, Je Young Kim, Sang Hoon Choy
  • Publication number: 20200358103
    Abstract: A secondary battery includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte solution, wherein the positive electrode includes a current collector and a positive electrode active material layer disposed on the current collector, the positive electrode active material layer includes a positive electrode active material and carbon nanotubes, and the electrolyte solution includes a non-aqueous solvent, a lithium salt, and tetravinylsilane.
    Type: Application
    Filed: February 22, 2019
    Publication date: November 12, 2020
    Applicant: LG Chem, Ltd.
    Inventors: Joo Yul Baek, Young Min Lim, Jun Muk Lim, Sang Hoon Choy, Chul Haeng Lee
  • Publication number: 20200203778
    Abstract: A positive electrode slurry composition for a secondary battery which includes a positive electrode active material, a carbon-based conductive agent having a specific surface area (Brunauer-Emmett-Teller (BET)) of 100 m2/g to 200 m2/g, a binder, and a nitrile-based copolymer which has an electrolyte solution swelling degree defined by Equation (1) of 200% or less and does not contain a functional group other than a cyano group is provided: electrolyte solution swelling degree (%)={(W1?W0)/W0}×100??Equation (1) wherein, W0 is an initial weight of a polymer film prepared from the nitrile-based copolymer, and W1 is a weight of the polymer film which is measured after storing the polymer film at 60° for 48 hours in an electrolyte solution.
    Type: Application
    Filed: March 4, 2020
    Publication date: June 25, 2020
    Applicant: LG Chem, Ltd.
    Inventors: Jung Woo Yoo, Hye Lim Shim, Jun Muk Lim
  • Publication number: 20200126684
    Abstract: The present invention provides a composite conductive material having excellent dispersibility and a method for producing the same. In an embodiment, the method includes supporting a catalyst on surfaces of carbon particles; heat treating the catalyst in a helium or hydrogen atmosphere such that the catalyst penetrate the surfaces of the carbon particles and are impregnated beneath the surfaces of the carbon particles at a contact point between the carbon particles and the impregnated catalyst; and heating the carbon particles having the impregnated catalyst disposed therein in the presence of a source gas to grow carbon nanofibers from the impregnated catalyst to form a composite conductive material, wherein the source gas contains a carbon source, and wherein the carbon nanofibers extend from the contact point to above the surfaces of the carbon particles.
    Type: Application
    Filed: June 8, 2018
    Publication date: April 23, 2020
    Applicant: LG Chem, Ltd.
    Inventors: Tea Gon Kim, Je Young Kim, Hak Yoon Kim, Ki Won Sung, Ye Lin Kim, Joo Yul Baek, Jung Keun Yoo, Jun Muk Lim, Seul Ki Kim