Patents by Inventor Jun OGI

Jun OGI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240036096
    Abstract: To achieve decreased noise and improved sensitivity by reducing parasitic capacitance in a charge detection sensor. The charge detection sensor includes a detection element, a detection electrode, and a contact. The detection element is provided on one surface of a semiconductor substrate and detects a charge. The detection electrode is provided on another surface different from the one surface of the semiconductor substrate. The contact penetrates the semiconductor substrate and electrically connects the detection electrode and the detection element. Since no wiring layer is formed between the detection element and the detection electrode, the parasitic capacitance is reduced.
    Type: Application
    Filed: August 11, 2023
    Publication date: February 1, 2024
    Inventors: JUN OGI, YURI KATO, NAOHIKO KIMIZUKA, YOSHIHISA MATOBA, KAN SHIMIZU
  • Patent number: 11862656
    Abstract: There is provided a semiconductor device including: a plurality of bumps on a first semiconductor substrate; and a lens material in a region other than the plurality of bumps on the first semiconductor substrate, wherein a distance between a side of a bump closest to the lens material and a side of the lens material closest to the bump is greater than twice a diameter of the bump closest to the lens material, and wherein the distance between the side of the bump closest to the lens material and the side of the lens material closest to the bump is greater a minimum pitch of the bumps.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: January 2, 2024
    Assignee: SONY GROUP CORPORATION
    Inventors: Jun Ogi, Junichiro Fujimagari, Susumu Inoue, Atsushi Fujiwara
  • Publication number: 20230384431
    Abstract: A light receiving device according to an embodiment of the present disclosure includes a stacked chip structure including a pixel chip and a circuit chip that are stacked. In the pixel chip, a light receiving element is provided. The light receiving element generates a signal in accordance with reception of a photon. In the circuit chip, a circuit section that is included in a readout circuit is disposed along a direction perpendicular to a substrate surface of the circuit chip with respect to an electrical coupling section between the pixel chip and the circuit chip. The readout circuit reads the signal generated by the light receiving element.
    Type: Application
    Filed: September 13, 2021
    Publication date: November 30, 2023
    Inventor: Jun Ogi
  • Publication number: 20230358608
    Abstract: A light-receiving apparatus (1a) includes a counting unit (11), a setting unit (12), and an acquiring unit (13). The counting unit is configured to measure a detection number of times that represents the number of times incidence of a photon to a light-receiving element has been detected within an exposure period and to output a counted value. The setting unit is configured to set a cycle of updating time information in accordance with an elapsed time during the exposure period. The acquiring unit is configured to acquire the time information indicating a time at which the counted value reaches a threshold before the exposure period elapses.
    Type: Application
    Filed: June 9, 2023
    Publication date: November 9, 2023
    Inventors: Hongbo Zhu, Kazuki Hizu, Takafumi Takatsuka, Yusuke Oike, Jun Ogi, Yoshiaki Tashiro
  • Patent number: 11754610
    Abstract: To achieve decreased noise and improved sensitivity by reducing parasitic capacitance in a charge detection sensor. The charge detection sensor includes a detection element, a detection electrode, and a contact. The detection element is provided on one surface of a semiconductor substrate and detects a charge. The detection electrode is provided on another surface different from the one surface of the semiconductor substrate. The contact penetrates the semiconductor substrate and electrically connects the detection electrode and the detection element. Since no wiring layer is formed between the detection element and the detection electrode, the parasitic capacitance is reduced.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: September 12, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Jun Ogi, Yuri Kato, Naohiko Kimizuka, Yoshihisa Matoba, Kan Shimizu
  • Patent number: 11754442
    Abstract: A light-receiving apparatus (1a) includes a counting unit (11), a setting unit (12), and an acquiring unit (13). The counting unit is configured to measure a detection number of times that represents the number of times incidence of a photon to a light-receiving element has been detected within an exposure period and to output a counted value. The setting unit is configured to set a cycle of updating time information in accordance with an elapsed time during the exposure period. The acquiring unit is configured to acquire the time information indicating a time at which the counted value reaches a threshold before the exposure period elapses.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: September 12, 2023
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Hongbo Zhu, Kazuki Hizu, Takafumi Takatsuka, Yusuke Oike, Jun Ogi, Yoshiaki Tashiro
  • Publication number: 20230275112
    Abstract: To provide a semiconductor device with which it is possible to reduce parasitic capacitance between electrodes for a resistance element, and a method for manufacturing the semiconductor device. A semiconductor device according to the present disclosure includes: a substrate; a first resistance layer provided on the substrate; a first electrode in contact with a lower surface of the first resistance layer; and a second electrode in contact with an upper surface of the first resistance layer.
    Type: Application
    Filed: April 6, 2021
    Publication date: August 31, 2023
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Hirokazu EJIRI, Jun OGI, Yuki KAWAHARA, Chigusa YAMANE
  • Patent number: 11492722
    Abstract: The present disclosure relates to a semiconductor apparatus and a potential measuring apparatus capable of preventing deterioration in signal characteristics due to parasitic capacitance caused by providing a configuration for realizing an electrode plating process when an electrode and an amplifier are provided on the same substrate. When a power source supplies a potential necessary for plating processing and a breaker reads a signal from liquid, and an amplifier amplifies and outputs the signal, the power source required for the plating processing is blocked with respect to the electrode. This is applicable to the potential measuring apparatus.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: November 8, 2022
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Masahiro Sato, Machiko Kametani, Jun Ogi, Yuri Kato
  • Publication number: 20220344386
    Abstract: To realize miniaturization of a pixel, reduction in noise, and high quantum efficiency, and to improve short-wavelength sensitivity while suppressing inter-pixel interference and variations for each pixel. According to the present disclosure, there is provided an imaging device including: a first semiconductor layer formed in a semiconductor substrate; a second semiconductor layer of a conductivity type opposite to a conductivity type of the first semiconductor layer formed on the first semiconductor layer; a pixel separation unit which defines a pixel region including the first semiconductor layer and the second semiconductor layer; a first electrode which is connected to the first semiconductor layer from one surface side of the semiconductor substrate; and a second electrode which is connected to the second semiconductor layer from a light irradiation surface side that is the other surface of the semiconductor substrate, and is formed to correspond to a position of the pixel separation unit.
    Type: Application
    Filed: July 6, 2022
    Publication date: October 27, 2022
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Jun OGI, Yoshiaki TASHIRO, Takahiro TOYOSHIMA, Yorito SAKANO, Yusuke OIKE, Hongbo ZHU, Keiichi NAKAZAWA, Yukari TAKEYA, Atsushi OKUYAMA, Yasufumi MIYOSHI, Ryosuke MATSUMOTO, Atsushi HORIUCHI
  • Patent number: 11424281
    Abstract: To realize miniaturization of a pixel, reduction in noise, and high quantum efficiency, and to improve short-wavelength sensitivity while suppressing inter-pixel interference and variations for each pixel. According to the present disclosure, there is provided an imaging device including: a first semiconductor layer formed in a semiconductor substrate; a second semiconductor layer of a conductivity type opposite to a conductivity type of the first semiconductor layer formed on the first semiconductor layer; a pixel separation unit which defines a pixel region including the first semiconductor layer and the second semiconductor layer; a first electrode which is connected to the first semiconductor layer from one surface side of the semiconductor substrate; and a second electrode which is connected to the second semiconductor layer from a light irradiation surface side that is the other surface of the semiconductor substrate, and is formed to correspond to a position of the pixel separation unit.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: August 23, 2022
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Jun Ogi, Yoshiaki Tashiro, Takahiro Toyoshima, Yorito Sakano, Yusuke Oike, Hongbo Zhu, Keiichi Nakazawa, Yukari Takeya, Atsushi Okuyama, Yasufumi Miyoshi, Ryosuke Matsumoto, Atsushi Horiuchi
  • Publication number: 20220231070
    Abstract: There is provided a semiconductor device including: a plurality of bumps on a first semiconductor substrate; and a lens material in a region other than the plurality of bumps on the first semiconductor substrate, wherein a distance between a side of a bump closest to the lens material and a side of the lens material closest to the bump is greater than twice a diameter of the bump closest to the lens material, and wherein the distance between the side of the bump closest to the lens material and the side of the lens material closest to the bump is greater a minimum pitch of the bumps.
    Type: Application
    Filed: April 5, 2022
    Publication date: July 21, 2022
    Applicant: Sony Group Corporation
    Inventors: Jun OGI, Junichiro FUJIMAGARI, Susumu INOUE, Atsushi FUJIWARA
  • Publication number: 20220155153
    Abstract: A light-receiving apparatus (1a) includes a counting unit (11), a setting unit (12), and an acquiring unit (13). The counting unit is configured to measure a detection number of times that represents the number of times incidence of a photon to a light-receiving element has been detected within an exposure period and to output a counted value. The setting unit is configured to set a cycle of updating time information in accordance with an elapsed time during the exposure period. The acquiring unit is configured to acquire the time information indicating a time at which the counted value reaches a threshold before the exposure period elapses.
    Type: Application
    Filed: March 6, 2020
    Publication date: May 19, 2022
    Inventors: Hongbo Zhu, Kazuki Hizu, Takafumi Takatsuka, Yusuke Oike, Jun Ogi, Yoshiaki Tashiro
  • Patent number: 11322539
    Abstract: There is provided a semiconductor device including: a plurality of bumps on a first semiconductor substrate; and a lens material in a region other than the plurality of bumps on the first semiconductor substrate, wherein a distance between a side of a bump closest to the lens material and a side of the lens material closest to the bump is greater than twice a diameter of the bump closest to the lens material, and wherein the distance between the side of the bump closest to the lens material and the side of the lens material closest to the bump is greater a minimum pitch of the bumps.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: May 3, 2022
    Assignee: SONY CORPORATION
    Inventors: Jun Ogi, Junichiro Fujimagari, Susumu Inoue, Atsushi Fujiwara
  • Patent number: 11125716
    Abstract: A potential measurement device includes a plurality of read-out electrodes arranged in an array shape and that detects a potential at a potential generation point generated due to a chemical change, and a reference electrode that detects a reference potential. The reference electrode is arranged within the array of the read-out electrodes. With this configuration, a low-noise potential measurement device in which noise superimposed on a wire from each of the read-out electrodes to an amplifier and noise superimposed on a wire from the reference electrode to the amplifier, i.e., wiring noise, can be reduced is achieved.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: September 21, 2021
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Jun Ogi, Yusuke Oike
  • Patent number: 10852292
    Abstract: The present disclosure relates to a semiconductor apparatus and a potential measuring apparatus capable of preventing electrostatic breakdown in an electrode formation process when an electrode and an amplifier are provided on a same substrate. A diode is provided of which a cathode is connected to a previous stage of an amplifying transistor for amplifying a signal read by a read electrode for reading a potential having contact with liquid in which a specimen is input and an anode is grounded. With such a configuration, by bypassing a negative charge generated between the electrode and the amplifying transistor in the electrode formation process from the diode and discharging the negative charge toward ground so as to prevent electrostatic breakdown. This is applicable to a bioelectric potential measuring apparatus.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: December 1, 2020
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Masahiro Sato, Machiko Kametani, Jun Ogi, Yuri Kato
  • Publication number: 20200365629
    Abstract: To realize miniaturization of a pixel, reduction in noise, and high quantum efficiency, and to improve short-wavelength sensitivity while suppressing inter-pixel interference and variations for each pixel. According to the present disclosure, there is provided an imaging device including: a first semiconductor layer formed in a semiconductor substrate; a second semiconductor layer of a conductivity type opposite to a conductivity type of the first semiconductor layer formed on the first semiconductor layer; a pixel separation unit which defines a pixel region including the first semiconductor layer and the second semiconductor layer; a first electrode which is connected to the first semiconductor layer from one surface side of the semiconductor substrate; and a second electrode which is connected to the second semiconductor layer from a light irradiation surface side that is the other surface of the semiconductor substrate, and is formed to correspond to a position of the pixel separation unit.
    Type: Application
    Filed: August 7, 2020
    Publication date: November 19, 2020
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Jun OGI, Yoshiaki TASHIRO, Takahiro TOYOSHIMA, Yorito SAKANO, Yusuke OIKE, Hongbo ZHU, Keiichi NAKAZAWA, Yukari TAKEYA, Atsushi OKUYAMA, Yasufumi MIYOSHI, Ryosuke MATSUMOTO, Atsushi HORIUCHI
  • Publication number: 20200295071
    Abstract: There is provided a semiconductor device including: a plurality of bumps on a first semiconductor substrate; and a lens material in a region other than the plurality of bumps on the first semiconductor substrate, wherein a distance between a side of a bump closest to the lens material and a side of the lens material closest to the bump is greater than twice a diameter of the bump closest to the lens material, and wherein the distance between the side of the bump closest to the lens material and the side of the lens material closest to the bump is greater a minimum pitch of the bumps.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Applicant: Sony Corporation
    Inventors: Jun OGI, Junichiro FUJIMAGARI, Susumu INOUE, Atsushi FUJIWARA
  • Patent number: 10777597
    Abstract: To realize miniaturization of a pixel, reduction in noise, and high quantum efficiency, and to improve short-wavelength sensitivity while suppressing inter-pixel interference and variations for each pixel. According to the present disclosure, there is provided an imaging device including: a first semiconductor layer formed in a semiconductor substrate; a second semiconductor layer of a conductivity type opposite to a conductivity type of the first semiconductor layer formed on the first semiconductor layer; a pixel separation unit which defines a pixel region including the first semiconductor layer and the second semiconductor layer; a first electrode which is connected to the first semiconductor layer from one surface side of the semiconductor substrate; and a second electrode which is connected to the second semiconductor layer from a light irradiation surface side that is the other surface of the semiconductor substrate, and is formed to correspond to a position of the pixel separation unit.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: September 15, 2020
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Jun Ogi, Yoshiaki Tashiro, Takahiro Toyoshima, Yorito Sakano, Yusuke Oike, Hongbo Zhu, Keiichi Nakazawa, Yukari Takeya, Atsushi Okuyama, Yasufumi Miyoshi, Ryosuke Matsumoto, Atsushi Horiuchi
  • Publication number: 20200271710
    Abstract: To achieve decreased noise and improved sensitivity by reducing parasitic capacitance in a charge detection sensor. The charge detection sensor includes a detection element, a detection electrode, and a contact. The detection element is provided on one surface of a semiconductor substrate and detects a charge. The detection electrode is provided on another surface different from the one surface of the semiconductor substrate. The contact penetrates the semiconductor substrate and electrically connects the detection electrode and the detection element. Since no wiring layer is formed between the detection element and the detection electrode, the parasitic capacitance is reduced.
    Type: Application
    Filed: August 14, 2018
    Publication date: August 27, 2020
    Inventors: JUN OGI, YURI KATO, NAOHIKO KIMIZUKA, YOSHIHISA MATOBA, KAN SHIMIZU
  • Patent number: 10707259
    Abstract: There is provided a semiconductor device including: a plurality of bumps on a first semiconductor substrate; and a lens material in a region other than the plurality of bumps on the first semiconductor substrate, wherein a distance between a side of a bump closest to the lens material and a side of the lens material closest to the bump is greater than twice a diameter of the bump closest to the lens material, and wherein the distance between the side of the bump closest to the lens material and the side of the lens material closest to the bump is greater a minimum pitch of the bumps.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: July 7, 2020
    Assignee: Sony Corporation
    Inventors: Jun Ogi, Junichiro Fujimagari, Susumu Inoue, Atsushi Fujiwara