Patents by Inventor Junaid Ahmed Siddiqui

Junaid Ahmed Siddiqui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9728800
    Abstract: A proton exchange membrane and a membrane electrode assembly for an electrochemical cell such as a fuel cell are provided. A catalytically active component is disposed within the membrane electrode assembly. The catalytically active component comprises particles containing a metal oxide such as silica, metal or metalloid ions such as ions that include boron, and a catalyst. A process for increasing peroxide radical resistance in a membrane electrode is also provided that includes the introduction of the catalytically active component described into a membrane electrode assembly.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: August 8, 2017
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Kimberly Gheysen Raiford, Junaid Ahmed Siddiqui
  • Patent number: 9200180
    Abstract: A composition and associated method for chemical mechanical planarization (or other polishing) are described. The composition contains an abrasive, benzenesulfonic acid compound, a per-compound oxidizing agent, and water. The composition affords tunability of removal rates for metal, barrier layer materials, and dielectric layer materials in metal CMP processes. The composition is particularly useful in conjunction with the associated method for metal CMP applications (e.g., step 2 copper CMP processes).
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: December 1, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gautam Banerjee, Timothy Frederick Compton, Junaid Ahmed Siddiqui, Ajoy Zutshi
  • Patent number: 8722569
    Abstract: A catalytically active component is provided which comprises particles containing a metal oxide such as silica, metal or metalloid ions such as ions that include boron, and a catalyst. When introduced into the membrane electrode assembly of a fuel cell, the particles increase peroxide radical resistance in a membrane electrode.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: May 13, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Junaid Ahmed Siddiqui, Kimberly Gheysen Raiford
  • Publication number: 20140120455
    Abstract: A proton exchange membrane and a membrane electrode assembly for an electrochemical cell such as a fuel cell are provided. A catalytically active component is disposed within the membrane electrode assembly. The catalytically active component comprises particles containing a metal oxide such as silica, metal or metalloid ions such as ions that include boron, and a catalyst. A process for increasing peroxide radical resistance in a membrane electrode is also provided that includes the introduction of the catalytically active component described into a membrane electrode assembly.
    Type: Application
    Filed: January 6, 2014
    Publication date: May 1, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Kimberly Gheysen Raiford, Junaid Ahmed Siddiqui
  • Publication number: 20140120431
    Abstract: Disclosed are composite polymeric ion exchange membranes and processes for their production and use in electrochemical cells, wherein ion exchange polymers are impregnated into non-consolidated nanowebs.
    Type: Application
    Filed: June 15, 2012
    Publication date: May 1, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Mark Gerrit Roelofs, Biswajit Choudhury, Junaid Ahmed Siddiqui, Shoibal Banerjee
  • Patent number: 8663866
    Abstract: A proton exchange membrane and a membrane electrode assembly for an electrochemical cell such as a fuel cell are provided. A catalytically active component is disposed within the membrane electrode assembly. The catalytically active component comprises particles containing a metal oxide such as silica, metal or metalloid ions such as ions that include boron, and a catalyst. A process for increasing peroxide radical resistance in a membrane electrode is also provided that includes the introduction of the catalytically active component described into a membrane electrode assembly.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: March 4, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Kimberly Gheysen Raiford, Junaid Ahmed Siddiqui
  • Patent number: 8163049
    Abstract: A chemical-mechanical planarization composition containing surface-modified abrasive particles such as silica where at least a portion of the surface of the particles has bound thereto a surface-modifying aluminum-containing stabilizer and fluoride that is used to polish semiconductor substrates. The use of a CMP slurry containing surface-modifying aluminum-containing stabilizer and fluoride bound to a silica abrasive provides high metal polishing rates relative to the removal rate of a dielectric.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: April 24, 2012
    Assignee: DuPont Air Products Nanomaterials LLC
    Inventor: Junaid Ahmed Siddiqui
  • Patent number: 8114775
    Abstract: A chemical mechanical polishing composition contains 1) water, 2) optionally an abrasive material, 3) an oxidizer, preferably a per-type oxidizer, 4) a small amount of soluble metal-ion oxidizer/polishing accelerator, a metal-ion polishing accelerator bound to particles such as to abrasive particles, or both; and 5) at least one of the group selected from a) a small amount of a chelator, b) a small amount of a dihydroxy enolic compound, and c) a small amount of an organic accelerator. Ascorbic acid in an amount less than 800 ppm, preferably between about 100 ppm and 500 ppm, is the preferred dihydroxy enolic compound. The polishing compositions and processes are useful for substantially all metals and metallic compounds found in integrated circuits, but is particularly useful for tungsten.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: February 14, 2012
    Assignee: DuPont Air Products Nanomaterials, LLC
    Inventors: Junaid Ahmed Siddiqui, Daniel Hernandez Castillo, Steven Masami Aragaki, Robin Edward Richards
  • Publication number: 20110252970
    Abstract: The invention is directed to a nanofiber that contains at least one moisture sensitive polymer. The fiber also contains nanoparticles of a hydrogen bonding material incorporated into the body of the fiber. The hydrogen bonding material is present in an amount corresponding to greater than 2% of the polymer weight and the nanofiber has a mean fiber diameter measured along its length of less than one micron. Also included are filter media made from nanowebs of the fiber.
    Type: Application
    Filed: October 14, 2010
    Publication date: October 20, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: David Charles Jones, Junaid Ahmed Siddiqui
  • Publication number: 20110165777
    Abstract: A composition and associated method for the chemical mechanical planarization (CMP) of metal substrates on semiconductor wafers are described. The composition contains a nonionic fluorocarbon surfactant and a per-type oxidizer (e.g., hydrogen peroxide). The composition and associated method are effective in controlling removal rates of low-k films during copper CMP and provide for tune-ability in removal rates of low-k films in relation to removal rates of copper, tantalum, and oxide films.
    Type: Application
    Filed: March 21, 2011
    Publication date: July 7, 2011
    Applicant: DuPont Air Products Nanomaterials LLC
    Inventors: Junaid Ahmed Siddiqui, Rachel Dianne McConnell, Saifi Usmani
  • Patent number: 7915071
    Abstract: A method and associated composition for chemical mechanical planarization of a chalcogenide-containing substrate (e.g., germanium/antimony/tellurium (GST)-containing substrate) are described. The composition and method afford low defect levels (e.g., scratches incurred during polishing) as well as low dishing and local erosion levels on the chalcogenide-containing substrate during CMP processing.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: March 29, 2011
    Assignee: DuPont Air Products Nanomaterials, LLC
    Inventors: Junaid Ahmed Siddiqui, Saifi Usmani
  • Patent number: 7691287
    Abstract: A method of polishing a substrate with a polishing composition comprising an oxidizing agent and abrasive particles having a surface, said surface of the abrasive particles being at least partially modified with 1) at least one stabilizer compound comprising aluminum, boron, tungsten, or both, said stabilizer compound being bound via a covalent bond to said abrasive particles, and 2) an organic chelating compound, said chelating compound being bound via a covalent bond to said stabilizer compound. The organic chelating compounds include one or more of 1) a nitrogen-containing moiety and between one and five other polar groups; 2) a sulfur-containing moiety and between one and five other polar groups; and 3) between two and five polar groups selected from carboxylic acid groups or salts thereof and hydroxyl groups.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: April 6, 2010
    Assignee: DuPont Air Products NanoMaterials LLC
    Inventors: Junaid Ahmed Siddiqui, Timothy Frederick Compton, Robin Edward Richards
  • Patent number: 7678702
    Abstract: A composition and associated method for chemical mechanical planarization (or other polishing) are described. The composition contains a boron surface-modified abrasive, a nitro-substituted sulfonic acid compound, a per-compound oxidizing agent, and water. The composition affords high removal rates for barrier layer materials in metal CMP processes. The composition is particularly useful in conjunction with the associated method for metal CMP applications (e.g., step 2 copper CMP processes).
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: March 16, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Frederick Compton, Junaid Ahmed Siddiqui, Ajoy Zutshi
  • Publication number: 20090308836
    Abstract: A chemical mechanical polishing composition contains 1) water, 2) optionally an abrasive material, 3) an oxidizer, preferably a per-type oxidizer, 4) a small amount of soluble metal-ion oxidizer/polishing accelerator, a metal-ion polishing accelerator bound to particles such as to abrasive particles, or both; and 5) at least one of the group selected from a) a small amount of a chelator, b) a small amount of a dihydroxy enolic compound, and c) a small amount of an organic accelerator. Ascorbic acid in an amount less than 800 ppm, preferably between about 100 ppm and 500 ppm, is the preferred dihydroxy enolic compound. The polishing compositions and processes are useful for substantially all metals and metallic compounds found in integrated circuits, but is particularly useful for tungsten.
    Type: Application
    Filed: January 13, 2009
    Publication date: December 17, 2009
    Inventors: Junaid Ahmed Siddiqui, Daniel Hernandez Castillo, Steven Masaml Aragaki, Robin Edward Richards
  • Publication number: 20090261291
    Abstract: A composition and associated method for chemical mechanical planarization (or other polishing) are described. The composition contains an abrasive, benzenesulfonic acid compound, a per-compound oxidizing agent, and water. The composition affords tunability of removal rates for metal, barrier layer materials, and dielectric layer materials in metal CMP processes. The composition is particularly useful in conjunction with the associated method for metal CMP applications (e.g., step 2 copper CMP processes).
    Type: Application
    Filed: April 7, 2009
    Publication date: October 22, 2009
    Inventors: Gautam Banerjee, Timothy Frederick Compton, Junaid Ahmed Siddiqui, Ajoy Zutshi
  • Publication number: 20090250656
    Abstract: A chemical mechanical polishing composition having: a fluid comprising water and at least one oxidizing compound that produces free radicals when contacted with an activator; and a plurality of particles having a surface and comprising at least one activator selected from ions or compounds of Cu, Fe, Mn, Ti, or mixtures thereof disposed on said surface, wherein at least a portion of said surface comprises a stabilizer. Preferred activators are selected from inorganic oxygen-containing compounds of B, W, Al, and P, for example borate, tungstate, aluminate, and phosphate. The activators are preferably ions of Cu or Fe. Advantageously, certain organic acids, and especially dihydroxy enolic acids, are included in an amount less than about 4000 ppm. Advantageously, activator is coated onto abrasive particles after the particles have been coated with stabilizer.
    Type: Application
    Filed: April 7, 2009
    Publication date: October 8, 2009
    Inventors: Junaid Ahmed Siddiqui, Robert J. Small, Daniel Hernandez Castillo
  • Publication number: 20090178206
    Abstract: The invention is an improved process for stripping chemically bonded spinning solvent from a solution-spun nonwoven web by adding antioxidant to the fiber-forming polymer, and transporting the nonwoven web through a solvent stripping zone at a temperature and for a time sufficient to reduce the solvent concentration of the fibers to less than about 1000 ppmw.
    Type: Application
    Filed: November 7, 2008
    Publication date: July 16, 2009
    Inventors: Pankaj Arora, Joseph Brian Hovanec, Junaid Ahmed Siddiqui, Simon Frisk
  • Patent number: 7513920
    Abstract: A CMP composition having: a fluid comprising water and at least one oxidizing compound that produces free radicals when contacted with an activator; and a plurality of particles having a surface and comprising at least one activator selected from ions or compounds of Cu, Fe, Mn, Ti, or mixtures thereof disposed on said surface, wherein at least a portion of said surface comprises a stabilizer. Preferred activators are selected from inorganic oxygen-containing compounds of B, W, Al, and P, for example borate, tungstate, aluminate, and phosphate. The activators are preferably ions of Cu or Fe. Surprisingly, as little as 0.2 ppm and 12 ppm of activator is useful, if the activator-containing particles are suspended in the fluid as a slurry. Advantageously, certain organic acids, and especially dihydroxy enolic acids, are included in an amount less than about 4000 ppm. Advantageously, activator is coated onto abrasive particles after the particles have been coated with stabilizer.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: April 7, 2009
    Assignee: DuPont Air Products NanoMaterials LLC
    Inventors: Junaid Ahmed Siddiqui, Robert J. Small, Daniel Hernandez Castillo
  • Patent number: 7514363
    Abstract: A composition and associated method for chemical mechanical planarization (or other polishing) are described. The composition contains an abrasive, benzenesulfonic acid compound, a per-compound oxidizing agent, and water. The composition affords tunability of removal rates for metal, barrier layer materials, and dielectric layer materials in metal CMP processes. The composition is particularly useful in conjunction with the associated method for metal CMP applications (e.g., step 2 copper CMP processes).
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: April 7, 2009
    Assignee: DuPont Air Products NanoMaterials LLC
    Inventors: Gautam Banerjee, Timothy Frederick Compton, Junaid Ahmed Siddiqui, Ajoy Zutshi
  • Publication number: 20090057661
    Abstract: A method and associated composition for chemical mechanical planarization of a chalcogenide-containing substrate (e.g., germanium/antimony/tellurium (GST)-containing substrate) are described. The composition and method afford low defect levels (e.g., scratches incurred during polishing) as well as low dishing and local erosion levels on the chalcogenide-containing substrate during CMP processing.
    Type: Application
    Filed: August 18, 2008
    Publication date: March 5, 2009
    Applicant: DUPONT AIR PRODUCTS NANOMATERIALS LLC
    Inventors: Junaid Ahmed Siddiqui, Saifi Usmani