Patents by Inventor Junfei Chen

Junfei Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240143872
    Abstract: A simulation analysis system for dioxin concentration in furnace of municipal solid waste incineration process includes an area division module, the area division module is connected with a numerical simulation module, the numerical simulation module is connected with a single-factor analysis module, the single-factor analysis module includes an orthogonal test analysis module, and the orthogonal test analysis module is connected with a control module; the area division module is used for dividing areas in the incinerator, the numerical simulation module is used for conducting modeling simulation on the divided areas, the single-factor analysis module is used for conducting single-factor analysis according to the output of the numerical simulation module, and the orthogonal test analysis module is used for conducting orthogonal test analysis according to the output of the numerical simulation module.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 2, 2024
    Inventors: Jian TANG, JiaKun Chen, Heng XIA, Junfei QIAO
  • Patent number: 11953456
    Abstract: A method for separating oil-water two-phase NMR signals by using dynamic nuclear polarization comprising: using a combination of a non-selective free radical and a selective relaxation reagent to selectively enhance an NMR signal of an oil phase or a water phase, the relaxation reagent being capable of selectively suppressing dynamic polarization enhancement of the water phase or oil phase, thus achieving the polarization enhancement of a single fluid phase in the mixed fluid phases and realizing separation of the two-phase signals; or using a selective free radical to selectively enhance the NMR signal of the oil phase or the water phase, thus achieving the polarization enhancement of a single fluid phase in the mixed fluid phases and realizing separation of the oil-water two-phase NMR signals. The method is simple and easy to operate, has a short test time, and can efficiently separate NMR signals of oil and water phases.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: April 9, 2024
    Assignee: Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences
    Inventors: Chaoyang Liu, Junfei Chen, Li Chen, Jiwen Feng, Zhen Zhang, Zhekai Zhang, Fang Chen
  • Patent number: 11719655
    Abstract: A method for measuring oil-water distribution using DNP-MRI, comprising adding a free radical for DNP enhanced NMR signal of a water phase or an oil phase in a sample containing oil and water; performing an MRI experiment on the sample, and collecting an MRI image of the sample without DNP enhancement; applying microwave excitation for DNP-MRI experiment under the same MRI experiment condition as step 2, and collecting an MRI image of the sample after DNP enhancement; and comparing the MRI image after DNP enhancement with the MRI image without DNP enhancement. In the MRI image with DNP enhancement, an area with enhanced MRI signal intensity is a selectively enhanced fluid phase distribution area, and an area without obviously changed MRI signal intensity is a non-selectively enhanced fluid phase distribution area. The method is simple, convenient to operate, short in measurement time, and high in measurement efficiency.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: August 8, 2023
    Assignee: Innovation Academy For Precision Measurement Science And Technology, Chinese Academy of Sciences
    Inventors: Li Chen, Junfei Chen, Chaoyang Liu, Zhen Zhang, Tao Feng, Jiwen Feng, Fang Chen
  • Patent number: 11680998
    Abstract: An NMR relaxation time inversion method based on an unsupervised neural network includes simulating inversion kernel matrix, simulating continuous NMR relaxation time spectrum, simulating noise, calculating NMR relaxation signals as samples, various samples forming a sample set, constructing an unsupervised neural network model, and defining a loss function of the unsupervised neural network model; and taking the samples in the training sample set as an input of the unsupervised neural network model, to obtain an optimal mapping relationship between the NMR relaxation signals and the NMR relaxation time spectrum with a minimum loss function. The present invention provides the possibility of using experimental data as the sample for training since the trading sample does not need to be labeled, can automatically learn the optimal regularization parameters without depending on the initial value and manual experience, and predicts fast.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: June 20, 2023
    Inventors: Li Chen, Sheng Shen, Junfei Chen, Fang Chen, Chaoyang Liu
  • Publication number: 20230140265
    Abstract: An NMR relaxation time inversion method based on an unsupervised neural network includes simulating inversion kernel matrix, simulating continuous NMR relaxation time spectrum, simulating noise, calculating NMR relaxation signals as samples, various samples forming a sample set, constructing an unsupervised neural network model, and defining a loss function of the unsupervised neural network model; and taking the samples in the training sample set as an input of the unsupervised neural network model, to obtain an optimal mapping relationship between the NMR relaxation signals and the NMR relaxation time spectrum with a minimum loss function. The present invention provides the possibility of using experimental data as the sample for training since the trading sample does not need to be labeled, can automatically learn the optimal regularization parameters without depending on the initial value and manual experience, and predicts fast.
    Type: Application
    Filed: September 15, 2022
    Publication date: May 4, 2023
    Applicant: INNOVATION ACADEMY FOR PRECISION MEASUREMENT SCIENCE AND TECHNOLOGY, CAS
    Inventors: Li CHEN, Sheng SHEN, Junfei CHEN, Fang CHEN, Chaoyang LIU
  • Publication number: 20220057346
    Abstract: A method for measuring oil-water distribution using DNP-MRI, comprising adding a free radical for DNP enhanced NMR signal of a water phase or an oil phase in a sample containing oil and water; performing an MRI experiment on the sample, and collecting an MRI image of the sample without DNP enhancement; applying microwave excitation for DNP-MRI experiment under the same MRI experiment condition as step 2, and collecting an MRI image of the sample after DNP enhancement; and comparing the MRI image after DNP enhancement with the MRI image without DNP enhancement. In the MRI image with DNP enhancement, an area with enhanced MRI signal intensity is a selectively enhanced fluid phase distribution area, and an area without obviously changed MRI signal intensity is a non-selectively enhanced fluid phase distribution area. The method is simple, convenient to operate, short in measurement time, and high in measurement efficiency.
    Type: Application
    Filed: November 5, 2021
    Publication date: February 24, 2022
    Inventors: Li Chen, Junfei Chen, Chaoyang Liu, Zhen Zhang, Tao Feng, Jiwen Feng, Fang Chen
  • Publication number: 20220057347
    Abstract: A method for separating oil-water two-phase NMR signals by using dynamic nuclear polarization comprising: using a combination of a non-selective free radical and a selective relaxation reagent to selectively enhance an NMR signal of an oil phase or a water phase, the relaxation reagent being capable of selectively suppressing dynamic polarization enhancement of the water phase or oil phase, thus achieving the polarization enhancement of a single fluid phase in the mixed fluid phases and realizing separation of the two-phase signals; or using a selective free radical to selectively enhance the NMR signal of the oil phase or the water phase, thus achieving the polarization enhancement of a single fluid phase in the mixed fluid phases and realizing separation of the oil-water two-phase NMR signals. The method is simple and easy to operate, has a short test time, and can efficiently separate NMR signals of oil and water phases.
    Type: Application
    Filed: November 5, 2021
    Publication date: February 24, 2022
    Inventors: Chaoyang Liu, Junfei Chen, Li Chen, Jiwen Feng, Zhen Zhang, Zhekai Zhang, Fang Chen