Patents by Inventor Jung-Geun Jee

Jung-Geun Jee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160260726
    Abstract: A preliminary tunnel insulation pattern and a preliminary charge storage pattern are formed on each active pattern extending in a direction, and a trench is defined between structures including the active pattern, the preliminary tunnel insulation pattern and the preliminary charge storage pattern. A preliminary isolation pattern partially fills the trench. A dielectric layer and a control gate electrode layer are formed on the preliminary charge storage pattern and the preliminary isolation pattern. The control gate electrode layer, the dielectric layer, the preliminary charge storage pattern and the preliminary tunnel insulation pattern are patterned to form gate structures including a tunnel insulation pattern, a charge storage pattern, a dielectric layer pattern and a control gate electrode. The preliminary isolation pattern is isotropically etched to form an isolation pattern and a first air gap. An insulating interlayer is formed between the gate structures to keep the first air gap.
    Type: Application
    Filed: February 19, 2016
    Publication date: September 8, 2016
    Inventors: Jae-Jin SHIN, Kyung-Hyun KIM, Jung-Hun NO, Choong-Kee SEONG, Seung-Pil CHUNG, Jung-Geun JEE
  • Patent number: 9368508
    Abstract: There is provided a peripheral circuit region including a plurality of circuit elements disposed on a first substrate; and a cell region including at least one channel region extending from an upper surface of a second substrate disposed on the first substrate in a direction perpendicular to the upper surface of the second substrate, and a plurality of gate electrode layers and a plurality of insulating layers stacked on the second substrate to be adjacent to the at least one channel region, wherein at least a portion of the first substrate contacts the second substrate, and the first substrate and the second substrate provide a single substrate.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: June 14, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung Geun Jee, Dong Kyum Kim, Jin Gyun Kim, Ki Hyun Hwang
  • Publication number: 20160064227
    Abstract: There are provided methods for manufacturing a semiconductor device including providing a substrate including a metal layer including an oxidized surface layer in a heat treatment chamber, generating hydrogen radicals within the heat treatment chamber and reducing the oxidized surface layer of the metal layer using the hydrogen radicals.
    Type: Application
    Filed: August 24, 2015
    Publication date: March 3, 2016
    Inventors: Hyun Yong GO, Eun Young LEE, Jung Geun JEE, Eun Yeoung CHOI, Jin Gyun KIM, Hun Hyeong LIM
  • Publication number: 20150372000
    Abstract: There is provided a peripheral circuit region including a plurality of circuit elements disposed on a first substrate; and a cell region including at least one channel region extending from an upper surface of a second substrate disposed on the first substrate in a direction perpendicular to the upper surface of the second substrate, and a plurality of gate electrode layers and a plurality of insulating layers stacked on the second substrate to be adjacent to the at least one channel region, wherein at least a portion of the first substrate contacts the second substrate, and the first substrate and the second substrate provide a single substrate.
    Type: Application
    Filed: January 9, 2015
    Publication date: December 24, 2015
    Inventors: Jung Geun JEE, Dong Kyum KIM, Jin Gyun KIM, Ki Hyun HWANG
  • Patent number: 9184172
    Abstract: A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: November 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Geun Jee, Seok-Hoon Kim, Su-Jin Shin, Woo-Sung Lee, Tae-Ouk Kwon
  • Patent number: 9129857
    Abstract: According to example embodiments, a semiconductor device includes horizontal patterns stacked on a substrate. The horizontal patterns define an opening through the horizontal patterns. A first core pattern is in the opening. A second core pattern is in the opening on the first core pattern. A first active pattern is between the first core pattern and the horizontal patterns. A second active pattern containing a first element is between the second core pattern and the horizontal patterns. The second active pattern contains the first element at a higher concentration than a concentration of the first element in the second core pattern.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: September 8, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bi-O Kim, Byong-Ju Kim, Jung-Geun Jee, Jin-Gyun Kim, Jae-Young Ahn, Ki-Hyun Hwang
  • Publication number: 20150235836
    Abstract: In a method of forming an oxide layer of a semiconductor process, a preliminary precursor flow is provided on a substrate in a deposition chamber to form a preliminary precursor layer, a precursor flow and a first oxidizing agent flow are provided on the preliminary precursor layer alternately and repeatedly to form precursor layers and first oxidizing agent layers alternately stacked on the preliminary precursor layer, and a second oxidizing agent flow is provided on the precursor layer or the first oxidizing agent layer alternately stacked to form a second oxidizing agent layer.
    Type: Application
    Filed: February 18, 2015
    Publication date: August 20, 2015
    Inventors: Hyun-Yong GO, Jin-Gyun KIM, Dong-Kyum KIM, Jung-Ho KIM, Koong-Hyun NAM, Sung-Hae LEE, Eun-Young LEE, Jung-Geun JEE, Eun-Yeoung CHOI, Ki-Hyun HWANG
  • Patent number: 9111897
    Abstract: A method of forming a polysilicon layer includes providing a silicon precursor onto an object loaded in a process chamber to form a seed layer. The silicon precursor includes a nitrogen containing silicon precursor and a chlorine containing silicon precursor. The method further includes providing a silicon source on the seed layer.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: August 18, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-Geun Jee, Jin-Gyun Kim, Ji-Hoon Choi, Ki-Hyun Hwang
  • Publication number: 20150099353
    Abstract: A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Jung-Geun JEE, Seok-Hoon KIM, Su-Jin SHIN, Woo-Sung LEE, Tae-Ouk KWON
  • Publication number: 20140080298
    Abstract: A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 20, 2014
    Inventors: Jung-Geun JEE, Seok-Hoon KIM, Su-Jin SHIN, Woo-Sung LEE, Tae-Ouk KWON
  • Patent number: 8610195
    Abstract: A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Geun Jee, Seok-Hoon Kim, Su-Jin Shin, Woo-Sung Lee, Tae-Ouk Kwon
  • Publication number: 20130273704
    Abstract: A method of forming a polysilicon layer includes providing a silicon precursor onto an object loaded in a process chamber to form a seed layer. The silicon precursor includes a nitrogen containing silicon precursor and a chlorine containing silicon precursor. The method further includes providing a silicon source on the seed layer.
    Type: Application
    Filed: December 17, 2012
    Publication date: October 17, 2013
    Inventors: Jung-Geun JEE, Jin-Gyun KIM, Ji-Hoon CHOI, Ki-Hyun HWANG
  • Patent number: 8497545
    Abstract: A method of manufacturing a non-volatile memory device is provided. The method includes forming isolation patterns defining an active region on a substrate, forming a floating gate pattern on the active region, and forming a gate line on the floating gate pattern. The floating gate pattern is self-aligned on the active region and has an impurity ion concentration that becomes relatively low as the floating gate pattern gets nearer to the active region.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: July 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Geun Jee, Ho-Min Son, Yong-Woo Hyung, Jae-Jong Han, Taek-Jin Lim
  • Patent number: 8481387
    Abstract: In a method of forming an insulation structure, at least one oxide layer is formed on an object by at least one oxidation process, and then at least one nitride layer is formed from the oxide layer by at least one nitration process. An edge portion of the insulation structure may have a thickness substantially the same as that of a central portion of the insulation structure so that the insulation structure may have a uniform thickness and improved insulation characteristics. When the insulation structure is employed as a tunnel insulation layer of a semiconductor device, the semiconductor device may have enhanced endurance and improved electrical characteristics because a threshold voltage distribution of cells in the semiconductor device may become uniform.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: July 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Geun Jee, Young-Jin Noh, Bon-Young Koo, Chul-Sung Kim, Hun-Hyeoung Leam, Woong Lee
  • Patent number: 8431983
    Abstract: A non-volatile memory device and a method of fabricating the same are provided. The method can include disposing an isolation layer on a semiconductor substrate. The isolation layer may protrude from the main surface of the semiconductor substrate and define an active region. In a recess defined by the protrusion of the isolation layer and the active region, a diffusion-retarding poly pattern and a floating gate may be formed in sequence. A control gate may be disposed on the isolation layer to cover the diffusion-retarding poly pattern and the floating gate.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: April 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woong Lee, Jung-Yoon Ko, Sang-Kyoung Lee, Ho-Min Son, Won-Jun Jang, Jung-Geun Jee
  • Publication number: 20130032878
    Abstract: According to example embodiments, a semiconductor device includes horizontal patterns stacked on a substrate. The horizontal patterns define an opening through the horizontal patterns. A first core pattern is in the opening. A second core pattern is in the opening on the first core pattern. A first active pattern is between the first core pattern and the horizontal patterns. A second active pattern containing a first element is between the second core pattern and the horizontal patterns. The second active pattern contains the first element at a higher concentration than a concentration of the first element in the second core pattern.
    Type: Application
    Filed: July 27, 2012
    Publication date: February 7, 2013
    Inventors: Bi-O Kim, Byong-Ju Kim, Jung-Geun Jee, Jin-Gyun Kim, Jae-Young Ahn, Ki-Hyun Hwang
  • Publication number: 20120267702
    Abstract: A device includes a first GSL, a plurality of first word lines, a first SSL, a plurality of first insulation layer patterns, and a first channel. The first GSL, the first word lines, and the first SSL are spaced apart from each other on a substrate in a first direction perpendicular to a top surface of a substrate. The first insulation layer patterns are between the first GSL, the first word lines and the first SSL. The first channel on the top surface of the substrate extends in the first direction through the first GSL, the first word lines, the first SSL, and the first insulation layer patterns, and has a thickness thinner at a portion thereof adjacent to the first SSL than at portions thereof adjacent to the first insulation layer patterns.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 25, 2012
    Inventors: Jung-Geun JEE, Jin-Gyun Kim, Jun-Kyu Yang, Ji-Hoon Choi, Dong-Kyum Kim, Ki-Hyun Hwang
  • Publication number: 20120156848
    Abstract: A method of manufacturing a non-volatile memory device includes alternately stacking interlayer sacrificial layers and interlayer insulating layers on a substrate, forming first openings exposing the substrate, forming sidewall insulating layers on sidewalls of the first openings, and forming channel regions on the sidewall insulating layers. The first openings penetrate the interlayer sacrificial layers and the interlayer insulating layers. The sidewall insulating layers have different thicknesses according to distances from the substrate.
    Type: Application
    Filed: September 22, 2011
    Publication date: June 21, 2012
    Inventors: Sang-ryol YANG, Ki-hyun HWANG, Seung-bae PARK, Jin-gyun KIM, Woong LEE, Jung-geun JEE, Ji-hoon CHOI
  • Publication number: 20110291175
    Abstract: A non-volatile memory device includes a field region that defines an active region in a semiconductor substrate, a floating gate pattern on the active region, a dielectric layer on the floating gate pattern and a control gate on the dielectric layer. The control gate includes a first conductive pattern that has a first composition that crystallizes in a first temperature range, and a second conductive pattern that has a second composition that is different from the first composition and that crystallizes in a second temperature range that is lower than the first temperature range, the first conductive pattern being between the dielectric layer and the second conductive pattern.
    Type: Application
    Filed: April 22, 2011
    Publication date: December 1, 2011
    Inventors: Jung-Geun Jee, Seok-Hoon Kim, Su-Jin Shin, Woo-Sung Lee, Tae-Ouk Kwon
  • Publication number: 20110275190
    Abstract: In a method of forming an insulation structure, at least one oxide layer is formed on an object by at least one oxidation process, and then at least one nitride layer is formed from the oxide layer by at least one nitration process. An edge portion of the insulation structure may have a thickness substantially the same as that of a central portion of the insulation structure so that the insulation structure may have a uniform thickness and improved insulation characteristics. When the insulation structure is employed as a tunnel insulation layer of a semiconductor device, the semiconductor device may have enhanced endurance and improved electrical characteristics because a threshold voltage distribution of cells in the semiconductor device may become uniform.
    Type: Application
    Filed: July 22, 2011
    Publication date: November 10, 2011
    Inventors: Jung-Geun JEE, Young-Jin Noh, Bon-Young Koo, Chul-Sung Kim, Hun-Hyeoung Leam, Woong Lee