Patents by Inventor Junnosuke Sekiguchi

Junnosuke Sekiguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9234292
    Abstract: A nickel-iron alloy plating solution which can suppress, in a nickel-iron alloy plating solution containing divalent iron ions and divalent nickel ions, oxidation of divalent iron ions to trivalent iron ions and can prevent the occurrence of the precipitation of iron (III) hydroxide to allow stable continuous operation and also to provide a nickel-iron alloy plating solution which allows production of a soft magnetic film which is stable in composition. The nickel-iron alloy plating solution of the present invention is characterized in that it comprises divalent iron ions, divalent nickel ions and a hydroxylamine salt and has a pH of 3.0 or lower.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: January 12, 2016
    Assignee: JX NIPPON MINING & METALS CORPORATION
    Inventors: Masaomi Murakami, Junnosuke Sekiguchi
  • Patent number: 9034154
    Abstract: A sputtering target with low generation of particles in which oxides, carbides, nitrides, borides, intermetallic compounds, carbonitrides, and other substances without ductility exist in a matrix phase made of a highly ductile substance at a volume ratio of 1 to 50%, wherein a highly ductile and conductive metal coating layer is formed on an outermost surface of the target. Provided are a sputtering target capable of improving the target surface in which numerous substances without ductility exist and preventing or inhibiting the generation of nodules and particles during sputtering, and a method of producing such a sputtering target.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: May 19, 2015
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Nakamura, Akira Hisano, Junnosuke Sekiguchi
  • Publication number: 20140158546
    Abstract: An electrolytic copper plating solution for filling for forming microwiring for ULSI, is characterized in that it has a pH of from 1.8 to 3.0. The electrolytic copper plating solution preferably contains a saturated carboxylic acid having from 1 to 4 carbon atoms at a concentration from 0.01 to 2.0 mol/L.
    Type: Application
    Filed: December 10, 2013
    Publication date: June 12, 2014
    Inventors: Junnosuke SEKIGUCHI, Hirofumi TAKAHASHI, Akihiro AIBA
  • Patent number: 8736057
    Abstract: A substrate having, on a base material, a barrier film for preventing copper diffusion containing one or more metal elements selected from tungsten, molybdenum and niobium, a metal element having a catalytic function in electroless plating such as platinum, gold, silver and palladium, and nitrogen contained in the form of a nitride of the aforementioned one or more metal elements selected from tungsten, molybdenum and niobium. The barrier film for preventing copper diffusion is manufactured by sputtering in a nitrogen atmosphere using a target containing one or more metal elements selected from tungsten, molybdenum and niobium and the aforementioned metal element having a catalytic function in electroless plating.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: May 27, 2014
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Junichi Ito, Atsushi Yabe, Junnosuke Sekiguchi, Toru Imori
  • Patent number: 8734579
    Abstract: An aqueous solution containing divalent iron ions having improved storage stability such that the oxidation over time of divalent iron ions in the aqueous solution containing divalent iron ions to trivalent iron ions is suppressed and the occurrence of the precipitation of iron (III) hydroxide is prevented for long periods. The aqueous solution contains divalent iron ions having improved storage stability characterized in that it contains divalent iron ions and a hydroxylamine salt as a reducing agent and has a pH of 3.0 or lower. The pH is preferably 2.2 or lower and more preferably 1.2 or lower.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: May 27, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Masaomi Murakami, Junnosuke Sekiguchi
  • Publication number: 20130139648
    Abstract: A high purity platinum recovery method including the steps of dissolving a platinum alloy containing ruthenium in aqua regia and eliminating residue, thereafter causing acid with platinum dissolved therein and an ammonium chloride solution to react so as to deposit chloroplatinic ammonium salt, and reducing the chloroplatinic ammonium salt to obtain a platinum sponge. The method is characterized in that acid with platinum dissolved therein and the ammonium chloride solution are caused to react at a temperature of 40° C. or higher.
    Type: Application
    Filed: June 21, 2011
    Publication date: June 6, 2013
    Applicant: JX Nippon Mining & Metals Corporation
    Inventor: Junnosuke Sekiguchi
  • Patent number: 8404035
    Abstract: An electroless copper plating solution that is favorable to improve the adhesion of a plating film and realizes uniform plating at a low temperature is characterized by containing a water-soluble nitrogen-containing polymer in an electroless copper plating solution, and preferably the above-mentioned electroless copper plating solution contains glyoxylic acid and phosphinic acid as reducing agents. The water-soluble nitrogen-containing polymer is preferably a polyacrylamide or a polyethyleneimine and, preferably, its weight average molecular weight (Mw) is at least 100,000 and Mw/Mn is 10.0 or less.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: March 26, 2013
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Atsushi Yabe, Junnosuke Sekiguchi, Toru Imori, Yoshihisa Fujihira
  • Patent number: 8395264
    Abstract: A layer having a barrier function and catalytic power and excelling in formation uniformity and coverage of an ultrathin film, a pretreatment technique making it possible to form an ultrafine wiring and form a thin seed layer of uniform film thickness and a substrate including a thin seed layer formed with a uniform film thickness by electroless plating by using the aforementioned technique. A substrate in which an alloy film of one or more metal elements, having a barrier function and a metal element or metal elements, having catalytic power with respect to electroless plating is formed by chemical vapor deposition (CVD) on a base to a film thickness of 0.5 nm to 5 nm with a content ratio of the one or more metal element having a barrier function from 5 to 90 at. %.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: March 12, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Junichi Ito, Junnosuke Sekiguchi, Toru Imori
  • Patent number: 8394508
    Abstract: A plated article has an alloy thin film formed on a substrate and having a catalytically active metal (A) for electroless plating and a metal (B) capable of undergoing displacement plating with a metal ion contained in an electroless plating solution, and a metal thin film formed on the alloy thin film by electroless displacement and reduction plating. The alloy thin film of the catalytically active metal (A) and the metal (B) capable of displacement plating has a composition comprising 5 at % to 40 at % of the metal (A). The metal thin film formed by electroless displacement and reduction plating is a metal thin film having a thickness no greater than 10 nm and a resistivity no greater than 10 ??·cm. Preferably, the metal (B) has a barrier function with respect to a metal of the metal thin film.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: March 12, 2013
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Atsushi Yabe, Junichi Ito, Yoshiyuki Hisumi, Junnosuke Sekiguchi, Toru Imori
  • Patent number: 8390123
    Abstract: A ULSI micro-interconnect member having a substrate and a ULSI micro-interconnect formed on the substrate, wherein the ULSI micro-interconnect includes a barrier layer formed on the substrate and a ruthenium electroplating layer formed on the barrier layer; the ULSI micro-interconnect member further including a copper electroplating layer formed using the ruthenium electroplating layer as a seed layer; and a process for fabricating the ULSI micro-interconnect members.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: March 5, 2013
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Junnosuke Sekiguchi, Toru Imori, Takashi Kinase
  • Patent number: 8333834
    Abstract: An object of the present invention is to provide a high-purity aqueous copper sulfonate solution and a simplified method of producing this solution. The aqueous copper sulfonate solution of the present invention is characterized in that the copper concentration therein is at least 90 g/L, the content of metal impurities is less than 10 mg/L as metal for each metal impurity, the content of chlorine is less than 10 mg/L, and the sulfonic acid is a sulfonic acid represented by the following general formula R—(SO3H)n (in the formula, R represents a lower alkyl group, lower alkylidene group, lower alkylene group, or hydroxyalkyl group and n represents 1 or 2).
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: December 18, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Junnosuke Sekiguchi, Masaomi Murakami, Toru Imori
  • Patent number: 8283051
    Abstract: A plated product made of a substrate having formed thereon an alloy barrier thin film for preventing copper diffusion contains metal B, which has barrier properties in relation to copper and enables displacement plating with the copper ions contained in an electroless copper plating solution, and metal A, which tends to have less ionization than metal B in an electroless copper plating solution at a pH of 10 or higher; the alloy barrier thin film for preventing copper diffusion has a composition wherein metal A constitutes between 15 and 35 at % of the atoms; and a copper thin film is formed on the alloy barrier thin film by electroless plating using an electroless copper plating solution at a pH of 10 or higher.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: October 9, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Junichi Ito, Atsushi Yabe, Junnosuke Sekiguchi, Toru Imori, Yasuhiro Yamakoshi, Shinichiro Senda
  • Patent number: 8247301
    Abstract: A substrate having, on a base material, a barrier film for preventing copper diffusion containing one or more metal elements selected from tungsten, molybdenum and niobium, a metal element having a catalytic function in electroless plating such as ruthenium, rhodium, and iridium, and nitrogen contained in the form of a nitride of the aforementioned one or more metal elements selected from tungsten, molybdenum and niobium. The barrier film for preventing copper diffusion is manufactured by sputtering in a nitrogen atmosphere using a target containing one or more metal elements selected from tungsten, molybdenum and niobium and the aforementioned metal element having a catalytic function in electroless plating.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: August 21, 2012
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Junichi Ito, Atsushi Yabe, Junnosuke Sekiguchi, Toru Imori
  • Publication number: 20120174827
    Abstract: An object of the present invention is to provide a high-purity aqueous copper sulfonate solution and a simplified method of producing this solution. The aqueous copper sulfonate solution of the present invention is characterized in that the copper concentration therein is at least 90 g/L, the content of metal impurities is less than 10 mg/L as metal for each metal impurity, the content of chlorine is less than 10 mg/L, and the sulfonic acid is a sulfonic acid represented by the following general formula R—(SO3H)n (in the formula, R represents a lower alkyl group, lower alkylidene group, lower alkylene group, or hydroxyalkyl group and n represents 1 or 2).
    Type: Application
    Filed: February 9, 2011
    Publication date: July 12, 2012
    Inventors: Junnosuke Sekiguchi, Masaomi Murakami, Toru Imori
  • Patent number: 8182873
    Abstract: A method for metal plating with good adhesion to materials that are difficult to plate wherein a material to be plated is surface-treated with a silane coupling agent having in a molecule thereof a functional group with a metal-capturing capability, is heat treated at a high temperature of at least 150° C. in air or an inert gas atmosphere, surface treatment is performed with a solution containing a noble metal compound, and electroless plating is performed. Alternatively, a metal plating method is provided wherein a material to be plated is surface-treated with a liquid in which a noble metal compound and a silane coupling agent having in a molecule thereof a functional group with a metal-capturing capability have already been mixed or reacted, is heat treated at a high temperature of at least 150° C. in air or an inert gas atmosphere, and electroless plating is performed.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: May 22, 2012
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Toru Imori, Junnosuke Sekiguchi, Atsushi Yabe, Yoshihisa Fujihira
  • Publication number: 20120118747
    Abstract: An object of the present invention is to provide a nickel-iron alloy plating solution which can suppress, in the nickel-iron alloy plating solution containing divalent iron ions and divalent nickel ions, oxidation of divalent iron ions to trivalent iron ions and can prevent occurrence of the precipitation of iron (III) hydroxide to allow stable continuous operations and also to provide a nickel-iron alloy plating solution which allows production of a soft magnetic film being stable in composition. The nickel-iron alloy plating solution of the present invention is characterized in that it comprises divalent iron ions, divalent nickel ions and a hydroxylamine salt and has a pH of 3.0 or lower.
    Type: Application
    Filed: October 25, 2010
    Publication date: May 17, 2012
    Inventors: Masaomi Murakami, Junnosuke Sekiguchi
  • Publication number: 20120103229
    Abstract: An object of the present invention is to provide an aqueous solution containing divalent iron ions having improved storage stability such that oxidation over time of divalent iron ions in the aqueous solution containing divalent iron ions to trivalent iron ions is suppressed and occurrence of the precipitation of iron (III) hydroxide is prevented for long periods. The present invention relates to an aqueous solution containing divalent iron ions having improved storage stability characterized in that it comprises divalent iron ions and a hydroxylamine salt as a reducing agent and has a pH of 3.0 or lower. The pH is preferably 2.2 or lower and more preferably 1.2 or lower.
    Type: Application
    Filed: October 25, 2010
    Publication date: May 3, 2012
    Applicant: JX Nippon Mining & Metals Corporation
    Inventors: Masaomi Murakami, Junnosuke Sekiguchi
  • Publication number: 20120103820
    Abstract: An object of the present invention is to provide an electrolytic copper plating solution which can suppress, upon electrolytic copper plating on a copper seed layer during fabrication of ULSI copper microwiring (damascene copper wiring) having trends to further miniaturization, dissolution of the copper seed layer and accordingly can suppress occurrence of voids on the inner wall of vias/trenches. The present invention provides an electrolytic copper plating solution for filling for forming microwiring for ULSI, characterized in that it has a pH of 1.8 or higher and 3.0 or lower. The electrolytic copper plating solution preferably comprises a saturated carboxylic acid having 1 or more and 4 or less carbon atoms at 0.01 mol/L or more and 2.0 mol/L or less.
    Type: Application
    Filed: June 22, 2010
    Publication date: May 3, 2012
    Inventors: Junnosuke Sekiguchi, Hirofumi Takahashi, Akihiro Aiba
  • Patent number: 8163400
    Abstract: The present invention provides a plated article that has a thin seed layer having a uniform thickness, formed by electroless plating and allowing formation of ultrafine wiring, and that avoids the complicated formation of a bilayer of a barrier layer and a catalytic metal layer prior to forming the seed layer. The present invention also provides a method for manufacturing the plated article. The plated article has an alloy thin film formed on a substrate and containing a catalytically active metal (A) for electroless plating and a metal (B) capable of undergoing displacement plating with a metal ion contained in an electroless plating solution, and a metal thin film formed on the alloy thin film by electroless displacement and reduction plating. The alloy thin film of the catalytically active metal (A) and the metal (B) capable of displacement plating has a composition comprising 5at% to 40at% of the metal (A).
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: April 24, 2012
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Atsushi Yabe, Junichi Ito, Yoshiyuki Hisumi, Junnosuke Sekiguchi, Toru Imori
  • Patent number: 8089154
    Abstract: It is an object of the present invention to provide a technology for forming an ULSI fine copper wiring by a simpler method. An electronic component in which a thin alloy film of tungsten and a noble metal used as a barrier-seed layer for an ULSI fine copper wiring is formed on a base material, wherein the thin alloy film has a composition comprising tungsten at a ratio equal to or greater than 50 at. % and the noble metal at a ratio of equal to or greater than 5 at. % and equal to or less than 50 at. %. The noble metal is preferably one or more kinds of metals selected from the group consisting of ruthenium, rhodium, and iridium.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: January 3, 2012
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Junnosuke Sekiguchi, Toru Imori