Patents by Inventor Junqiang Hu

Junqiang Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210356317
    Abstract: Aspects of the present disclosure describe a coherent distributed acoustic sensing (DAS) method employing a combined complex and phase domain vibration strength estimation are employed to produce a distributed acoustic sensing output signal exhibiting mitigated Rayleigh fading effect. Operationally, a phase-domain estimator is regulated by a complex-domain estimator that provides Rayleigh fading information associated with each DAS fiber segment, which in turn is used to determine if/how a phase-domain estimator is affected by fading. In the occurrence of severe fading, the complex-domain estimator is used to produce an indication of vibration strength, wherein noise occurring in that estimator is not amplified as would be in the phase-domain estimator.
    Type: Application
    Filed: May 11, 2021
    Publication date: November 18, 2021
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Ezra IP, Junqiang HU, Yue-Kai HUANG
  • Publication number: 20210318162
    Abstract: Distributed fiber optic sensing systems (DFOS) methods, and structures that employ DVS/DAS point sensors and a two-stage processing methodology/structure that advantageously enable point sensors to send sensor data at any time—thereby providing significant processing advantages over the prior art.
    Type: Application
    Filed: April 7, 2021
    Publication date: October 14, 2021
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Junqiang HU, Ting WANG
  • Patent number: 11131578
    Abstract: Aspects of the present disclosure describe systems, methods and structures employing two-stage detection/analysis for distributed vibration sensing (DVS) along an optical fiber in which a first stage provides pre-processed signal data and the second stage—based on the first stage result—only processes locations that have or might have vibrational activity resulting in increased sensitivity and reduced false alarms.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: September 28, 2021
    Inventors: Junqiang Hu, Ting Wang
  • Publication number: 20210255007
    Abstract: Aspects of the present disclosure describe distributed optical fiber sensing systems, methods, and structures that advantageously employ point sensors that send sensory data/information over an attached, distributed optical fiber sensor without using a separate network or communications facility.
    Type: Application
    Filed: January 12, 2021
    Publication date: August 19, 2021
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Junqiang HU, Ting WANG
  • Patent number: 11054303
    Abstract: Disclosed are improved distributed optical fiber sensing systems, methods, and structures employing disparate point sensors that utilize uni-directional signal transmission via the distributed optical fiber such that a separate communications network for the disparate point sensors is not required.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: July 6, 2021
    Inventors: Junqiang Hu, Ting Wang
  • Publication number: 20210123798
    Abstract: Aspects of the present disclosure describe a computer implemented method for the transfer of sensor data on dynamic software defined network (SDN) controlled optical network.
    Type: Application
    Filed: October 24, 2020
    Publication date: April 29, 2021
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Ting Wang, Junqiang Hu, Shailendra Gaikwad
  • Publication number: 20200370950
    Abstract: Aspects of the present disclosure describe Rayleigh fading mitigation via short pulse coherent distributed acoustic sensing with multi-location beating-term combination. In illustrative configurations, systems, methods, and structures according to the present disclosure employ a two stage modulation arrangement providing short interrogator pulses resulting in a greater number of sensing data points and reduced effective sectional length. The increased number of data points are used to mitigate Rayleigh fading via a spatial combining process, multi-location-beating combining (MLBC) which uses weighted complex-valued DAS beating results from neighboring locations and aligns phase signals of each of the locations, before combining them to produce a final DAS phase measurement. Since Rayleigh scattering is a random statistic, the MLBC process allows capture of different statics from neighboring locations with correlated vibration/acoustic signal.
    Type: Application
    Filed: May 20, 2020
    Publication date: November 26, 2020
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Ezra IP, Yue-Kai HUANG, Junqiang HU, Shuji MURAKAMI
  • Patent number: 10797789
    Abstract: Aspects of the present disclosure describe systems, methods and structures for distributed fiber sensing systems including interrogator and attached fiber in which the interrogator includes a common line card and function-specific, pluggable front end in which the line card is configurable and supports different signal processing paths and automatically senses the front-end type and uses corresponding firmware/software or signal processing path(s) to process sensed data.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: October 6, 2020
    Assignee: NEC Corporation
    Inventors: Junqiang Hu, Ting Wang
  • Publication number: 20200249078
    Abstract: Disclosed are improved distributed optical fiber sensing systems, methods, and structures employing disparate point sensors that utilize uni-directional signal transmission via the distributed optical fiber such that a separate communications network for the disparate point sensors is not required.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 6, 2020
    Applicant: NEC Laboratories America, Inc.
    Inventors: Junqiang HU, Ting WANG
  • Publication number: 20200249076
    Abstract: Aspects of the present disclosure describe optical fiber sensing systems, methods and structures and application employing coherent detection of backscattered signals.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 6, 2020
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Ezra IP, Yue-Kai HUANG, Junqiang HU, Philip JI, Shuji MURAKAMI, Yaowen LI
  • Publication number: 20200007228
    Abstract: Aspects of the present disclosure describe systems, methods and structures for distributed fiber sensing systems including interrogator and attached fiber in which the interrogator includes a common line card and function-specific, pluggable front end in which the line card is configurable and supports different signal processing paths and automatically senses the front-end type and uses corresponding firmware/software or signal processing path(s) to process sensed data.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Junqiang HU, Ting WANG
  • Publication number: 20200003612
    Abstract: Aspects of the present disclosure describe systems, methods and structures employing a two-stage detection for distributed vibration detection (DVS) in which a first step provides an abstracted/pre-processing data and the second step—based on the first step result—only processes locations that have or might have activity.
    Type: Application
    Filed: June 27, 2019
    Publication date: January 2, 2020
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Junqiang HU, Ting WANG
  • Patent number: 10010732
    Abstract: Aspects of the present disclosure describe apparatus, methods and systems for monitoring the operational status of fire extinguishers through the utilization of optically sensed, color profile determinations of a pressure gauge positioned on the fire extinguisher as well as the utilization of vibrational, and location sensing devices. Advantageously, monitoring apparatus according to the present disclosure are networkable, and a number of their operational characteristics may be configured via the network and associated servers. Furthermore, monitoring apparatus according to the present disclosure may employ vibrational, acceleration, GPS, RFID, and ultrasonic sensors to detect movement, location, and obstructions. In sharp contrast to the prior art, apparatus, methods and systems according to the present disclosure operate with existing fire extinguishers and provide a convenient, cost effective, and highly functional upgrade path for deployed fire extinguishers.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: July 3, 2018
    Assignee: NEC Corporation
    Inventors: Junqiang Hu, Ting Wang
  • Patent number: 10010733
    Abstract: Aspects of the present disclosure describe apparatus, methods and systems for monitoring the operational status of fire extinguishers through the utilization of optically sensed, color profile determinations of a pressure gauge positioned on the fire extinguisher as well as the utilization of vibrational, and location sensing devices. Advantageously, monitoring apparatus according to the present disclosure are networkable, and a number of their operational characteristics may be configured via the network and associated servers. Furthermore, monitoring apparatus according to the present disclosure may employ vibrational, acceleration, GPS, RFID, and ultrasonic sensors to detect movement, location, and obstructions. In sharp contrast to the prior art, apparatus, methods and systems according to the present disclosure operate with existing fire extinguishers and provide a convenient, cost effective, and highly functional upgrade path for deployed fire extinguishers.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: July 3, 2018
    Assignee: NEC Corporation
    Inventors: Junqiang Hu, Ting Wang
  • Patent number: 9807476
    Abstract: Disclosed is a sensing platform including a server; one or more remote sensing systems coupled to the server, one or more local sensor(s) for target object monitoring; a wireless module coupled to a network through wireless a link; and a processor to read data from local sensor(s) and communicate information through the network using the wireless module. The sensing system has a low power consumption mode in which the processor puts the wireless module and the local sensor(s) in sleep mode or powered off. The processor has a sleep or deep sleep mode, a power-off mode, and a wake up mode, and the local sensor(s) are accessed at a frequency 1/T1 and the wireless module is at lower frequency 1/Tw where Tw>T1, and the server receives monitored value from remote sensing systems and interacts with the remote sensing system.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: October 31, 2017
    Assignee: NEC Corporation
    Inventors: Junqiang Hu, Ting Wang
  • Publication number: 20170209725
    Abstract: Aspects of the present disclosure describe apparatus, methods and systems for monitoring the operational status of fire extinguishers through the utilization of optically sensed, color profile determinations of a pressure gauge positioned on the fire extinguisher as well as the utilization of vibrational, and location sensing devices. Advantageously, monitoring apparatus according to the present disclosure are networkable, and a number of their operational characteristics may be configured via the network and associated servers. Furthermore, monitoring apparatus according to the present disclosure may employ vibrational, acceleration, GPS, RFID, and ultrasonic sensors to detect movement, location, and obstructions. In sharp contrast to the prior art, apparatus, methods and systems according to the present disclosure operate with existing fire extinguishers and provide a convenient, cost effective, and highly functional upgrade path for deployed fire extinguishers.
    Type: Application
    Filed: January 23, 2017
    Publication date: July 27, 2017
    Inventors: Junqiang HU, Ting WANG
  • Publication number: 20170209726
    Abstract: Aspects of the present disclosure describe apparatus, methods and systems for monitoring the operational status of fire extinguishers through the utilization of optically sensed, color profile determinations of a pressure gauge positioned on the fire extinguisher as well as the utilization of vibrational, and location sensing devices. Advantageously, monitoring apparatus according to the present disclosure are networkable, and a number of their operational characteristics may be configured via the network and associated servers. Furthermore, monitoring apparatus according to the present disclosure may employ vibrational, acceleration, GPS, RFID, and ultrasonic sensors to detect movement, location, and obstructions. In sharp contrast to the prior art, apparatus, methods and systems according to the present disclosure operate with existing fire extinguishers and provide a convenient, cost effective, and highly functional upgrade path for deployed fire extinguishers.
    Type: Application
    Filed: January 23, 2017
    Publication date: July 27, 2017
    Inventors: Junqiang HU, Ting WANG
  • Publication number: 20170211937
    Abstract: An in-door positioning system for a building includes three or more external positioning devices (EPDs), wherein the EPD is capable of calculating the distance between each other; a floor plan module with a floor plan map of the building, for a building level of interest; and relative positions of the EPDs; and an indoor positioning device positioned at a predetermined distance to each of the EPDs.
    Type: Application
    Filed: January 11, 2017
    Publication date: July 27, 2017
    Inventors: Junqiang Hu, Ting Wang
  • Patent number: 9654852
    Abstract: Systems and methods for packet switching in a network, including two or more hybrid packet/circuit switching network architectures configured to connect two or more core level switches in the network architectures, the network architectures being controlled and managed using a centralized software defined network (SDN) control plane. An optical ring network may be configured to interconnect the two or more hybrid network architectures, and one or more hybrid electrical/optical packet/circuit switches configured to perform switching and traffic aggregation. One or more high-speed optical interfaces and one or more low-speed electrical/optical interfaces may be configured to transmit data.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: May 16, 2017
    Assignee: NEC Corporation
    Inventors: Yawei Yin, Konstantinos Kanonakis, Ankitkumar Patel, Philip Ji, Junqiang Hu
  • Patent number: 9609400
    Abstract: Systems and methods for data transport, including receiving one or more signals into a reconfigurable and flexible rate shared rate multi-transponder network architecture, wherein the network architecture includes one or more transponders with multiple line side interfaces and one or more client side interfaces. The transponders are configured to map one or more signals to multiple parallel Virtual Ethernet Links, remove idle characters from the one or more signals, buffer one or more blocks of characters using an intermediate block buffer, activate and deactivate one or more portions of input/output electrical lanes of an Ethernet module, multiplex and demultiplex the one or more signals to and from the input/output electrical lanes to enable sharing of a single optical transceiver by multiple independent signals, and insert blocks of idle characters to enable transmission over a lower rate transmission pipe.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: March 28, 2017
    Assignee: NEC Corporation
    Inventors: Konstantinos Kanonakis, Junqiang Hu, Ankitkumar Patel, Philip Ji, Ting Wang