Patents by Inventor Junsoo Shin

Junsoo Shin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8993092
    Abstract: A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: March 31, 2015
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Junsoo Shin
  • Patent number: 8685549
    Abstract: A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in2 is also described.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: April 1, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Junsoo Shin
  • Publication number: 20120213964
    Abstract: A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Applicant: UT-Battelle, LLC
    Inventors: Amit GOYAL, Junsoo Shin
  • Publication number: 20120033331
    Abstract: A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in2 is also described.
    Type: Application
    Filed: November 30, 2010
    Publication date: February 9, 2012
    Applicant: UT-Battelle, LLC
    Inventors: Amit Goyal, Junsoo Shin
  • Publication number: 20070274668
    Abstract: A method for switching the direction of polarization in a relatively small domain in a thin-film ferroelectric material whose direction of polarization is oriented normal to the surface of the material involves a step of moving an electrically-chargeable tip into contact with the surface of the ferroelectric material so that the direction of polarization in a region adjacent the tip becomes oriented in a preselected direction relative to the surface of the ferroelectric material. The tip is then pressed against the surface of the ferroelectric material so that the direction of polarization of the ferroelectric material within the area of the ferroelectric material in contact with the tip is reversed under the combined effect of the compressive influence of the tip and electric bias.
    Type: Application
    Filed: April 24, 2006
    Publication date: November 29, 2007
    Inventors: Sergei Kalinin, Arthur Baddorf, Ho Lee, Junsoo Shin, Alexei Gruverman, Edgar Karapetian, Mark Kachanov
  • Patent number: 7292768
    Abstract: A method for switching the direction of polarization in a relatively small domain in a thin-film ferroelectric material whose direction of polarization is oriented normal to the surface of the material involves a step of moving an electrically-chargeable tip into contact with the surface of the ferroelectric material so that the direction of polarization in a region adjacent the tip becomes oriented in a preselected direction relative to the surface of the ferroelectric material. The tip is then pressed against the surface of the ferroelectric material so that the direction of polarization of the ferroelectric material within the area of the ferroelectric material in contact with the tip is reversed under the combined effect of the compressive influence of the tip and electric bias.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: November 6, 2007
    Assignee: UT-Battelle, LLC
    Inventors: Sergei V. Kalinin, Arthur P. Baddorf, Ho Nyung Lee, Junsoo Shin, Alexei L. Gruverman, Edgar Karapetian, Mark Kachanov