Patents by Inventor Justin A. Dobbins

Justin A. Dobbins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8022307
    Abstract: A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: September 20, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Andrew W. Chu, Justin A. Dobbins, Robert C. Scully, Robert C. Trevino, Greg Y. Lin, Patrick W. Fink
  • Publication number: 20100147562
    Abstract: A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.
    Type: Application
    Filed: July 3, 2007
    Publication date: June 17, 2010
    Inventors: Andrew W. Chu, Justin A. Dobbins, Robert C. Scully, Robert C. Trevino, Greg Y. Lin, Patrick W. Fink
  • Patent number: 7410485
    Abstract: A miniature microwave antenna is disclosed which may be utilized for biomedical applications such as, for example, radiation induced hyperthermia through catheter systems. One feature of the antenna is that it possesses azimuthal directionality despite its small size. This directionality permits targeting of certain tissues while limiting thermal exposure of adjacent tissue. One embodiment has an outer diameter of about 0.095? (2.4 mm) but the design permits for smaller diameters.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: August 12, 2008
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Patrick W. Fink, Greg Y. Lin, Andrew W. Chu, Justin A. Dobbins, G. Dickey Arndt, Phong H. Ngo
  • Patent number: 7126553
    Abstract: A deployable antenna and method for using wherein the deployable antenna comprises a collapsible membrane having at least one radiating element for transmitting electromagnetic waves, receiving electromagnetic waves, or both.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: October 24, 2006
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Patrick W. Fink, Justin A. Dobbins, Greg Y. Lin, Andrew W. Chu, Robert C. Scully
  • Patent number: 6903687
    Abstract: A novel feed structure, for an antenna having a resonant electric field structure, comprising a patch element, an integrated circuit attached to the patch element, at least one inner conductor electrically connected to and terminating at the integrated circuit on a first end of the at least one inner conductor, wherein the at least one inner conductor extends through and is not electrically connected to the patch element, and wherein the at least one inner conductor is available for electrical connectivity on a second end of the at least one inner conductor, and an outer conductor electrically connected to and terminating at the patch element on a first end of the outer conductor, wherein the outer conductor is available for electrical connectivity on a second end of the outer conductor, and wherein the outer conductor concentrically surrounds the at least one inner conductor from the second end of the at least one inner conductor available for electrical connectivity to the first end of the outer conductor t
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: June 7, 2005
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Patrick W. Fink, Andrew W. Chu, Justin A. Dobbins, Greg Y. Lin
  • Patent number: 6816117
    Abstract: System and methods are disclosed for employing one or more radiators having non-unique phase centers mounted to a body with respect to a plurality of transmitters to determine location characteristics of the body such as the position and/or attitude of the body. The one or more radiators may consist of a single, continuous element or of two or more discrete radiation elements whose received signals are combined. In a preferred embodiment, the location characteristics are determined using carrier phase measurements whereby phase center information may be determined or estimated. A distributed antenna having a wide angle view may be mounted to a moveable body in accord with the present invention. The distributed antenna may be utilized for maintaining signal contact with multiple spaced apart transmitters, such as a GPS constellation, as the body rotates without the need for RF switches to thereby provide continuous attitude and position determination of the body.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: November 9, 2004
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Patrick W. Fink, Justin A. Dobbins
  • Publication number: 20020180641
    Abstract: System and methods are disclosed for employing one or more radiators having non-unique phase centers mounted to a body with respect to a plurality of transmitters to determine location characteristics of the body such as the position and/or attitude of the body. The one or more radiators may consist of a single, continuous element or of two or more discrete radiation elements whose received signals are combined. In a preferred embodiment, the location characteristics are determined using carrier phase measurements whereby phase center information may be determined or estimated. A distributed antenna having a wide angle view may be mounted to a moveable body in accord with the present invention. The distributed antenna may be utilized for maintaining signal contact with multiple spaced apart transmitters, such as a GPS constellation, as the body rotates without the need for RF switches to thereby provide continuous attitude and position determination of the body.
    Type: Application
    Filed: May 24, 2001
    Publication date: December 5, 2002
    Inventors: Patrick W. Fink, Justin A. Dobbins