Patents by Inventor Justin A. Riddle

Justin A. Riddle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9944822
    Abstract: The present application is directed to a method of making an article. The method comprises coating a composition to a surface of a substrate. The coating composition comprises an aqueous continuous liquid phase, a silica nano-particle dispersed in the aqueous continuous liquid phase, and a polymer latex dispersion. The coated substrate is then heated to at least 300° C.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: April 17, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Naiyong Jing, Justin A. Riddle, Zhigang Yu, Mingna Xiong, Zhengjun Wang, Yiwen Chu, Rui Pan, George Van Dyke Tiers, Katherine A. Brown
  • Patent number: 9926458
    Abstract: Articles having poly(vinyl alcohol)-containing (PVA-containing) and silica nanoparticle multilayer coatings are provided. More specifically, articles include a substrate and a multilayer coating attached to the substrate. The multilayer coating includes a first silica layer and a first PVA-containing layer. The first silica layer is a primer layer of the multilayer coating, and the silica layer comprises a plurality of acid-sintered interconnected silica nanoparticles arranged to form a continuous three-dimensional porous network. The PVA-containing and silica nanoparticle multilayer coatings can be used on a large variety of substrates and tend to be resistant to wet and dry abrasions, scratches, and impacts.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: March 27, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Karan Jindal, Justin A. Riddle, Paul B. Armstrong, Samuel J. Carpenter, William R. Dudley, Garry W. Lachmansingh, Jason T. Petrin, Naiyong Jing
  • Patent number: 9925560
    Abstract: Articles having crosslinked poly(vinyl alcohol) (PVA) and silica nanoparticle multilayer coatings are provided. More specifically, articles including a substrate, and a multilayer coating attached to the substrate are provided. The multilayer coating includes a first crosslinked poly(vinyl alcohol) (PVA) layer and a first silica layer. The first crosslinked PVA layer is an outermost layer of the multilayer coating. The first silica layer comprises a plurality of acid-sintered interconnected silica nanoparticles arranged to form a continuous three-dimensional porous network. The PVA and silica nanoparticle multilayer coatings can be used on a large variety of substrates and tend to be resistant to wet and dry abrasions, scratches, and impacts.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: March 27, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Paul B. Armstrong, Justin A. Riddle, Karan Jindal, Samuel J. Carpenter, Garry W. Lachmansingh, William R. Dudley, Jason T. Petrin, Naiyong Jing
  • Patent number: 9896557
    Abstract: Surface-structured, cross-linked silicone-based material and method for making the same. Embodiments of silicone-based materials described herein are useful, for example, in applications of light capture, anti-reflection, light redirection, light diffusion, hydrophobic surfaces, hydrophilic surfaces, light guiding, light collimation, light concentration, Fresnel lens, retro-reflection, drag reduction, air bleed adhesives, release liner, abrasion resistance, and anti-fouling.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: February 20, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Todd G. Pett, Timothy J. Hebrink, Naiyong Jing, Justin A. Riddle, David Scott Thompson, Andrew K. Hartzell, Junkang J. Liu
  • Patent number: 9895722
    Abstract: A method of removing an unwanted constituent from a siliceous surface in which the method includes contacting the siliceous surface and the unwanted constituent with a multi-functional composition that includes water, a hydrophilic silane, and a surfactant, and drying the surface.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: February 20, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Justin A. Riddle, Terry R. Hobbs, David D. Lu, Andrew S. D'Souza, Naiyong Jing, James P. Gardner, Jr., Yifan Zhang, Zachary J. Malmberg, Milind B. Sabade
  • Publication number: 20180022146
    Abstract: Articles comprising a coating of hydrophilic silane. Also, methods for making such articles and methods for using such articles.
    Type: Application
    Filed: October 2, 2017
    Publication date: January 25, 2018
    Inventors: Frederick J. Gustafson, Naiyong Jing, Justin A. Riddle, Willem V. Bastiaens
  • Publication number: 20170275495
    Abstract: The present disclosure is directed to compositions and methods for coating, particularly protecting and optionally cleaning, metallic surfaces, and articles containing such surfaces.
    Type: Application
    Filed: September 11, 2015
    Publication date: September 28, 2017
    Inventors: Justin A. Riddle, Adam J. Meuler, DanLi Wang, Zachary J. Malmberg, Syud M. Ahmed, Paul B. Armstrong, Milind B. Sabade
  • Publication number: 20170045284
    Abstract: A fluid control film is provided that includes fluid control channels extending along a channel longitudinal axis. Each of the fluid control channels has a surface and is configured to allow capillary movement of liquid in the channels. The fluid control film further includes a hydrophilic surface treatment covalently bonded to at least a portion of the surface of the fluid control channels. The fluid control film exhibits a capillary rise percent recovery of at least ten percent. Typically, the hydrophilic surface treatment includes functional groups selected from a non-zwitterionic sulfonate, a non-zwitterionic carboxylate, a zwitterionic sulfonate, a zwitterionic carboxylate, a zwitterionic phosphate, a zwitterionic phosphonic acid, and/or a zwitterionic phosphonate. A process for forming a fluid control film is also provided.
    Type: Application
    Filed: April 22, 2015
    Publication date: February 16, 2017
    Inventors: Adam J. Meuler, Susannah C. Clear, Steven P. Swanson, Kurt J. Halverson, Justin A. Riddle, Paul B. Armstrong, Caleb T. Nelson, Chetan P. Jariwala
  • Patent number: 9527336
    Abstract: Cleanable articles having overcoats with hydrophilic front surfaces and which are siloxane-bonded to an underlying body member. Also, methods of making and using such articles.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 27, 2016
    Assignee: 3M Innovative Properties Company
    Inventors: David M. Mahli, Robert A. Yapel, Justin A. Riddle, Mitchell A. F. Johnson, Moses M. David, Frederick J. Gustafson, Lan H. Liu, Yu Yang, Naiyong Jing, Caleb T. Nelson
  • Patent number: 9518245
    Abstract: Compositions and uses thereof to clean and/or rinse tableware, wherein the compositions include a sulfonated silane.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: December 13, 2016
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: James P. Gardner, Jr., Zachary J. Malmberg, Justin A. Riddle
  • Publication number: 20160333188
    Abstract: Articles having hydrophobic fluorinated coatings are provided. More specifically, the articles include a substrate, a primer layer of acid-sintered silica nanoparticles, and a hydrophobic fluorinated layer. The hydrophobic fluorinated coatings can be used on a large variety of substrate and tend to be quite durable even when subjected to repeated rubbing and/or cleaning.
    Type: Application
    Filed: July 26, 2016
    Publication date: November 17, 2016
    Inventors: Justin A. Riddle, Naiyong Jing, Erik D. Olson, Karl J. Manske, Richard M. Flynn, Suresh S. Iyer
  • Publication number: 20160289454
    Abstract: A method of making a coatable composition includes: providing a first composition comprising silica nanoparticles dispersed in an aqueous liquid vehicle, wherein the first composition has a pH greater than 6; acidifying the first composition to a pH of less than or equal to 4 using inorganic acid to provide a second composition; and dissolving at least one metal compound in the second composition to form the coatable composition. The silica nanoparticles have a polymodal particle size distribution, wherein the polymodal particle size distribution comprises a first mode having a first particle size in the range of from 8 to 35 nanometers, wherein the polymodal particle size distribution comprises a second mode having a second particle size in the range of from 2 to 20 nanometers, wherein the first particle size is greater than the second particle size. Coatable compositions, antistatic compositions, preparable by the method are also disclosed.
    Type: Application
    Filed: October 4, 2013
    Publication date: October 6, 2016
    Inventors: Naiyong Jing, Xuan Jiang, Justin A. Riddle, Fuxia Sun, Daniel J. Schmidt
  • Publication number: 20160222223
    Abstract: A coated article having a substrate coated with a layer of a sulfonate-functional coating, and methods of making and using.
    Type: Application
    Filed: April 12, 2016
    Publication date: August 4, 2016
    Inventors: Naiyong Jing, Justin A. Riddle, Xue-hua Chen, Erik D. Olson
  • Publication number: 20160177107
    Abstract: Articles having poly(vinyl alcohol) (PVA) and silica nanoparticle multilayer coatings are provided. More specifically, the articles include a substrate and a multilayer coating attached to the substrate. The multilayer coating includes a silica layer that is the outermost layer, the silica layer containing acid-sintered interconnected silica nanoparticles arranged to form a continuous three-dimensional porous network. The multilayer coating also includes a PVA layer disposed between a surface of the substrate and the outermost silica layer. The PVA and silica nanoparticle coatings can be used on a large variety of substrates and tend to be resistant to impacts, scratches, wet abrasions, soil and fog.
    Type: Application
    Filed: April 25, 2014
    Publication date: June 23, 2016
    Inventors: Justin A. Riddle, Paul B. Armstrong, Karan Jindal, Samuel J. Carpenter, Garry W. Lachmansingh, William R. Dudley, Jason T. Petrin, Naiyong Jing
  • Patent number: 9340683
    Abstract: A coating composition is described comprising: (i) a zwitterionic compound comprising sulfonate-functional groups and alkoxysilane groups and/or silanol-functional groups; (ii) alcohol and/or water; and (iii) a tetraalkoxysilane, oligomers thereof, lithium silicate, sodium silicate, potassium silicate, silica, or combinations thereof, along with coated articles and methods of making and using.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: May 17, 2016
    Assignee: 3M Innovative Properties Company
    Inventors: Naiyong Jing, Justin A. Riddle, Xue-hua Chen, Erik D. Olson
  • Publication number: 20160121365
    Abstract: Articles having crosslinked poly(vinyl alcohol) (PVA) and silica nanoparticle multilayer coatings are provided. More specifically, articles including a substrate, and a multilayer coating attached to the substrate are provided. The multilayer coating includes a first crosslinked poly(vinyl alcohol) (PVA) layer and a first silica layer. The first crosslinked PVA layer is an outermost layer of the multilayer coating. The first silica layer comprises a plurality of acid-sintered interconnected silica nanoparticles arranged to form a continuous three-dimensional porous network. The PVA and silica nanoparticle multilayer coatings can be used on a large variety of substrates and tend to be resistant to wet and dry abrasions, scratches, and impacts.
    Type: Application
    Filed: April 25, 2014
    Publication date: May 5, 2016
    Inventors: Paul B. Armstrong, Justin A. Riddle, Karan Jindal, Samuel J. Carpenter, Garry W. Lachmansingh, William R. Dudley, Jason T. Petrin, Naiyong Jing
  • Publication number: 20160096969
    Abstract: Articles having poly(vinyl alcohol)-containing (PVA-containing) and silica nanoparticle multilayer coatings are provided. More specifically, articles include a substrate and a multilayer coating attached to the substrate. The multilayer coating includes a first silica layer and a first PVA-containing layer. The first silica layer is a primer layer of the multilayer coating, and the silica layer comprises a plurality of acid-sintered interconnected silica nanoparticles arranged to form a continuous three-dimensional porous network. The PVA-containing and silica nanoparticle multilayer coatings can be used on a large variety of substrates and tend to be resistant to wet and dry abrasions, scratches, and impacts.
    Type: Application
    Filed: April 25, 2014
    Publication date: April 7, 2016
    Inventors: Karan Jindal, Justin A. Riddle, Paul B. Armstrong, Samuel J. Carpenter, William R. Dudley, Garry W. Lachmansingh, Jason T. Petrin, Naiyong Jing
  • Publication number: 20150252196
    Abstract: A method of making a coatable composition includes: a) providing a initial composition comprising silica nanoparticles dispersed in an aqueous liquid medium, wherein the silica nanoparticles have a particle size distribution with an average particle size of less than or equal to 20 nanometers, and wherein the silica sol has a pH greater than 6; b) acidifying the initial composition to a pH of less than or equal to 4 using inorganic acid to provide an acidified composition; and c) dissolving at least one metal compound in the acidified composition to provide a coatable composition. Coatable compositions, wear-resistant compositions, preparable by the method are also disclosed.
    Type: Application
    Filed: September 20, 2013
    Publication date: September 10, 2015
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Naiyong Jing, Xuan Jiang, Justin A. Riddle, Fuxia Sun, Christiane Strerath, Xue-hua Chen
  • Publication number: 20150237868
    Abstract: A method of making a coatable composition includes: a) providing a initial composition comprising silica nanoparticles dispersed in an aqueous liquid medium, wherein the silica nanoparticles have a particle size distribution with an average particle size of less than or equal to 100 nanometers, and wherein the silica sol has a pH greater than 6; b) acidifying the initial composition to a pH of less than or equal to 4 using inorganic acid to provide an acidified composition; and c) dissolving at least one metal compound in the acidified composition to provide a coatable composition. The at least one metal compound includes at least one of a silver compound, a zinc compound, and a copper compound. Coatable compositions, antimicrobial compositions, preparable by the method are also disclosed. Antimicrobial articles including the antimicrobial compositions are also disclosed.
    Type: Application
    Filed: September 12, 2013
    Publication date: August 27, 2015
    Inventors: Naiyong Jing, Justin A. Riddle, Xuan Jiang, Narina Y. Stepanova, Christiane Strerath, Fuxia Sun, Xue-hua Chen
  • Publication number: 20150232673
    Abstract: A method of making a coatable composition includes: a) providing a initial composition comprising silica nanoparticles dispersed in an aqueous liquid medium, wherein the silica nano articles have a particle size distribution with an average particle size of less than or equal to 100 nanometers, and wherein the silica sol has a pH greater than 6; b) acidifying the initial composition to a pH of less than or equal to 4 using inorganic acid to provide an acidified composition; and c) dissolving at least one metal compound in the acidified composition to provide a coatable composition. Coatable compositions and soil-resistant compositions, preparable by the method, are also disclosed. Soil-resistant articles including the soil-resistant compositions are also disclosed.
    Type: Application
    Filed: September 16, 2013
    Publication date: August 20, 2015
    Inventors: Naiyong Jing, Christiane Strerath, Fuxia Sun, Justin A. Riddle, Xuan Jiang, Xue-hua Chen