Patents by Inventor Justin G. Metcalf

Justin G. Metcalf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12000949
    Abstract: Systems, methods, and computer-readable storage media for generating, transmitting, and utilizing a composite radar and communication waveform are disclosed. The composite radar and communication waveform may facilitate radar detection and data communication operations and may be generated from a frequency modulated (FM) radar waveform and a communication signal. In an aspect, the composite radar and communication waveform may be generated by iteratively executing a shaping process against the FM radar waveform and the communication signal until a first stop criterion is satisfied to produce an initial composite radar and communication waveform having the communication signal embedded therein, and then iteratively executing an enhancement process against the initial composite radar waveform and the communication signal until a second stop criterion is satisfied to produce a final composite radar and communication waveform suitable for both radar detection and data communication operations.
    Type: Grant
    Filed: September 21, 2019
    Date of Patent: June 4, 2024
    Assignees: University of Kansas, The United States of America as Represented by the Secretary of the Air Force
    Inventors: Gerald Brandon Ravenscroft, Patrick M. McCormick, Shannon D. Blunt, Erik S. Perrins, Justin G. Metcalf
  • Patent number: 11885870
    Abstract: The present application discloses a new form of ?-STAP, referred to herein as post ?-STAP or P?-STAP, which overcomes the drawbacks associated with existing ?-STAP techniques. The P?-STAP techniques described herein facilitate the generation of additional training data and homogenization after pulse compression. For example, P?-STAP techniques may apply a plurality of homogenization filters to a pulse compressed datacube generated from an input radar waveform, which produces a plurality of new pulse compressed datacubes with improved characteristics. Unlike existing ?-STAP techniques described above, which require pre-pulse compressed data to operate, the P?-STAP techniques disclosed in the present application are designed to utilize pulse compressed data, and therefore may be readily applied to legacy radar systems.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: January 30, 2024
    Assignees: University of Kansas, The United States of America as Represented by the Secretary of the Air Force
    Inventors: Lumumba Harnett, Justin G. Metcalf, Shannon D. Blunt
  • Publication number: 20220350009
    Abstract: Systems, methods, and computer-readable storage media for generating and utilizing radar signals with embedded data are disclosed. Data is encoded onto a CPM waveform, which is then combined with a base radar waveform to produce a radar-embedded communication (REC) waveform. Both the CPM waveform and the base radar waveform may have a continuous phase and constant envelope, resulting in the REC waveform having a continuous phase and constant envelope. The changing (e.g., on a pulse-to-pulse basis) nature of the REC waveform causes RSM of clutter which may result in residual clutter after clutter cancellation, decreasing target detection performance of the radar system. In an aspect, various parameters may be utilized to dynamically adjust the performance of the radar system for a particular operating scenario, such as to enhance radar signal processing or enhance data communication capabilities.
    Type: Application
    Filed: September 18, 2020
    Publication date: November 3, 2022
    Inventors: Cenk Sahin, Patrick M. McCormick, Justin G. Metcalf, John Jakabosky, Shannon David Biunt, Erik S. Perrins
  • Publication number: 20210286067
    Abstract: The present application discloses a new form of ?-STAP, referred to herein as post ?-STAP or P?-STAP, which overcomes the drawbacks associated with existing ?-STAP techniques. The P?-STAP techniques described herein facilitate the generation of additional training data and homogenization after pulse compression. For example, P?-STAP techniques may apply a plurality of homogenization filters to a pulse compressed datacube generated from an input radar waveform, which produces a plurality of new pulse compressed datacubes with improved characteristics. Unlike existing ?-STAP techniques described above, which require prepulse compressed data to operate, the P?-STAP techniques disclosed in the present application are designed to utilize pulse compressed data, and therefore may be readily applied to legacy radar systems.
    Type: Application
    Filed: July 30, 2019
    Publication date: September 16, 2021
    Inventors: Lumumba Harnett, Justin G. Metcalf, Shannon D. Blunt
  • Publication number: 20210208237
    Abstract: Systems, methods, and computer-readable storage media for generating, transmitting, and utilizing a composite radar and communication waveform are disclosed. The composite radar and communication waveform may facilitate radar detection and data communication operations and may be generated from a frequency modulated (FM) radar waveform and a communication signal. In an aspect, the composite radar and communication waveform may be generated by iteratively executing a shaping process against the FM radar waveform and the communication signal until a first stop criterion is satisfied to produce an initial composite radar and communication waveform having the communication signal embedded therein, and then iteratively executing an enhancement process against the initial composite radar waveform and the communication signal until a second stop criterion is satisfied to produce a final composite radar and communication waveform suitable for both radar detection and data communication operations.
    Type: Application
    Filed: September 21, 2019
    Publication date: July 8, 2021
    Inventors: Gerald Brandon RAVENSCROFT, Patrick M. MCCORMICK, Shannon D. BLUNT, Erik S. PERRINS, Justin G. METCALF
  • Publication number: 20210132211
    Abstract: Systems and methods of embodiments provide a feasible approach to implementing Far-Field Radiated Emission Design (FFRED) techniques suitable for simultaneous transmission of radar and communication signals. A set of signals for transmission and a transmission direction for each signal of the set of signals may be determined. The set of signals includes at least a first signal associated with a first transmission direction and a second signal associated with a second transmission direction that is different from the first direction. An optimization problem is configured based on characteristics of an antenna array and the set of signals and then solved to identify a set of waveforms suitable for transmitting the signals. The set of waveforms may include at least two waveforms, each of the at least two waveforms configured for transmission by a different antenna element of the antenna array. The determined waveforms may be coherent in the far-field and suitable for power efficient transmission.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 6, 2021
    Inventors: Patrick M. McCormick, Cenk Sahin, Shannon David Blunt, Justin G. Metcalf
  • Patent number: 10725175
    Abstract: A receiver method and apparatus provides a more efficient computation and application of optimal filters. Range and Doppler processing in the receiver are decoupled and, as a result, computational complexity required for both filter computation and filtering stages are significantly reduced. In one embodiment, a response to an emitted signal is demodulated and sampled to provide baseband samples. The response includes a component due to interaction of the emitted signal with a target, The baseband samples are filtered in a bank of N parallel range filters to provide N filter outputs for each of the baseband samples. For one or more Doppler phase shifts ?, a discrete Fourier transform of the N filter outputs is computed to produce Doppler components that may be analyzed to determine at least one of a presence, range and speed of the target.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: July 28, 2020
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Cenk Sahin, Justin G. Metcalf, Braham Himed
  • Publication number: 20200132836
    Abstract: A receiver method and apparatus provides a more efficient computation and application of optimal filters. Range and Doppler processing in the receiver are decoupled and, as a result, computational complexity required for both filter computation and filtering stages are significantly reduced. In one embodiment, a response to an emitted signal is demodulated and sampled to provide baseband samples. The response includes a component due to interaction of the emitted signal with a target, The baseband samples are filtered in a bank of N parallel range filters to provide N filter outputs for each of the baseband samples. For one or more Doppler phase shifts ?, a discrete Fourier transform of the N filter outputs is computed to produce Doppler components that may be analyzed to determine at least one of a presence, range and speed of the target.
    Type: Application
    Filed: October 30, 2018
    Publication date: April 30, 2020
    Inventors: Cenk Sahin, Justin G. Metcalf, Braham Himed