Patents by Inventor Justin Lii

Justin Lii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10514510
    Abstract: The present disclosure is directed to a keyed optical component assembly that ensures that the same has a proper orientation when press-fit into or otherwise coupled to a complimentary opening of an optical subassembly housing. In an embodiment, the keyed optical component assembly includes a base portion defined by a first end and a second end disposed opposite the first end along a longitudinal axis. A first arcuate region extends from the first end towards the second end and transitions into a tapered region. A second arcuate region extends from the second end towards the first end and also transitions into the tapered region. Therefore, the tapered region extends between the first arcuate region and the second arcuate region, and generally tapers/narrows from the second arcuate region to the first arcuate region. The resulting shape of the base portion may generally be described as an asymmetric tear-drop shape.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: December 24, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Justin Lii, Hao-Hsiang Liao
  • Patent number: 10295765
    Abstract: A photodiode package is disclosed that includes a TO-Can style body with an exposed sensor cavity that eliminates the necessity of an encapsulant dispensing process. The TO-Can body of the photodiode package includes an integrated coupling member to allow for coupling to a ROSA housing without an intermediate member. The photodiode package includes a base portion with a cylindrical wall portion that extends therefrom to form an optical coupling cavity. A surface of the base portion provides at least one mounting surface within the optical coupling cavity for coupling to a photodiode chip. The cylindrical wall may function as an integrated coupling member and may be used to directly couple the photodiode package, e.g., without an intermediate cap/ring, into a socket of a ROSA housing. The base portion and cylindrical wall may be formed from a single piece of material, or from multiple pieces depending on a desired configuration.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: May 21, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, YongXuan Liang, Justin Lii
  • Patent number: 10230471
    Abstract: A coaxial transmitter optical subassembly (TOSA) including a cuboid type TO laser package may be used in an optical transceiver for transmitting an optical signal at a channel wavelength. The cuboid type TO laser package is made of a thermally conductive material and has substantially flat outer surfaces that may be thermally coupled to substantially flat outer surfaces on a transceiver housing and/or on other cuboid type TO laser packages. An optical transceiver may include multiple coaxial TOSAs with the cuboid type TO laser packages stacked in the transceiver housing. The cuboid type TO laser package may thus provide improved thermal characteristics and a reduced size within the optical transceiver.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: March 12, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Chong Wang, Justin Lii, Zhengyu Miao
  • Patent number: 10193302
    Abstract: A light engine is disclosed that includes an optical bench with a mirror etched therefrom to form a single, unitary structure. The integrated mirror may therefore be pre-aligned with an associated light path to reduce light path alignment errors. In an embodiment, the optical bench includes a first end extending to a second end along a longitudinal axis, a laser diode disposed on a mounting surface adjacent the first end of the optical bench and configured to output laser light along a first light path that extends substantially along the longitudinal axis, and an integrated mirror device disposed along the light path to receive and direct the laser light along a second light path to optically couple the laser light to a photonically-enabled complementary metal-oxide semiconductor (CMOS) die, the second light path being substantially orthogonal relative to the first light path.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: January 29, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Justin Lii, Ziliang Cai
  • Publication number: 20180331493
    Abstract: A light engine is disclosed that includes an optical bench with a mirror etched therefrom to form a single, unitary structure. The integrated mirror may therefore be pre-aligned with an associated light path to reduce light path alignment errors. In an embodiment, the optical bench includes a first end extending to a second end along a longitudinal axis, a laser diode disposed on a mounting surface adjacent the first end of the optical bench and configured to output laser light along a first light path that extends substantially along the longitudinal axis, and an integrated mirror device disposed along the light path to receive and direct the laser light along a second light path to optically couple the laser light to a photonically-enabled complementary metal-oxide semiconductor (CMOS) die, the second light path being substantially orthogonal relative to the first light path.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 15, 2018
    Inventors: Kai-Sheng LIN, Justin LII, Ziliang CAI
  • Patent number: 10054762
    Abstract: An optical component holder having a base portion with a chamfered (or step) portion is disclosed herein that allows a technician to position and partially insert the same within an associated opening using a relatively minor amount of force. The chamfered portion of the base portion operates, in a general sense, as a guide that ensures proper alignment of the optical component holder and allows the same to travel a predetermined distance within the opening before being blocked from further travel by “bottoming” out when the wider portion of the base is at the edge of the associated opening. Thus, the chamfered portion provides an alignment feature to provide tactile feedback that indicates to the technician that the optical component holder is aligned and evenly inserted into an associated opening prior to supplying additional force to press the optical component holder fully into a housing.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: August 21, 2018
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Hao-Hsiang Liao, Justin Lii
  • Publication number: 20180210156
    Abstract: A photodiode package is disclosed that includes a TO-Can style body with an exposed sensor cavity that eliminates the necessity of an encapsulant dispensing process. The TO-Can body of the photodiode package includes an integrated coupling member to allow for coupling to a ROSA housing without an intermediate member. The photodiode package includes a base portion with a cylindrical wall portion that extends therefrom to form an optical coupling cavity. A surface of the base portion provides at least one mounting surface within the optical coupling cavity for coupling to a photodiode chip. The cylindrical wall may function as an integrated coupling member and may be used to directly couple the photodiode package, e.g., without an intermediate cap/ring, into a socket of a ROSA housing. The base portion and cylindrical wall may be formed from a single piece of material, or from multiple pieces depending on a desired configuration.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 26, 2018
    Inventors: Kai-Sheng LIN, YongXuan LIANG, Justin LII
  • Publication number: 20180157005
    Abstract: An optical component holder having a base portion with a chamfered (or step) portion is disclosed herein that allows a technician to position and partially insert the same within an associated opening using a relatively minor amount of force. The chamfered portion of the base portion operates, in a general sense, as a guide that ensures proper alignment of the optical component holder and allows the same to travel a predetermined distance within the opening before being blocked from further travel by “bottoming” out when the wider portion of the base is at the edge of the associated opening. Thus, the chamfered portion provides an alignment feature to provide tactile feedback that indicates to the technician that the optical component holder is aligned and evenly inserted into an associated opening prior to supplying additional force to press the optical component holder fully into a housing.
    Type: Application
    Filed: December 6, 2016
    Publication date: June 7, 2018
    Inventors: Kai-Sheng LIN, Hao-Hsiang LIAO, Justin LII
  • Patent number: 9977200
    Abstract: In an embodiment, an optical component assembly is disclosed and is configured to be at least partially disposed within at least one first opening of an optical subassembly housing. The at least one optical component assembly comprising a base extending from a first end to a second end along a longitudinal axis, and a vertical mount disposed on the base and including a first surface that provides a mounting region to couple to an optical component, the first surface defining a vertical axis that extends substantially upright from the base and a horizontal axis that is angled relative to the longitudinal axis of the base at a first angle, the vertical mount further providing a channel that extends through the vertical mount, wherein the channel provides an optical pathway angled relative to the first surface at the first angle, the first angle being substantially between about 15 and 75 degrees.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: May 22, 2018
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Chong Wang, Justin Lii
  • Publication number: 20180131442
    Abstract: A coaxial transmitter optical subassembly (TOSA) including a cuboid type TO laser package may be used in an optical transceiver for transmitting an optical signal at a channel wavelength. The cuboid type TO laser package is made of a thermally conductive material and has substantially flat outer surfaces that may be thermally coupled to substantially flat outer surfaces on a transceiver housing and/or on other cuboid type TO laser packages. An optical transceiver may include multiple coaxial TOSAs with the cuboid type TO laser packages stacked in the transceiver housing. The cuboid type TO laser package may thus provide improved thermal characteristics and a reduced size within the optical transceiver.
    Type: Application
    Filed: May 23, 2016
    Publication date: May 10, 2018
    Inventors: I-Lung HO, Chong WANG, Justin LII, Zhengyu MIAO
  • Publication number: 20180059340
    Abstract: In an embodiment, an optical component assembly is disclosed and is configured to be at least partially disposed within at least one first opening of an optical subassembly housing. The at least one optical component assembly comprising a base extending from a first end to a second end along a longitudinal axis, and a vertical mount disposed on the base and including a first surface that provides a mounting region to couple to an optical component, the first surface defining a vertical axis that extends substantially upright from the base and a horizontal axis that is angled relative to the longitudinal axis of the base at a first angle, the vertical mount further providing a channel that extends through the vertical mount, wherein the channel provides an optical pathway angled relative to the first surface at the first angle, the first angle being substantially between about 15 and 75 degrees.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Kai-Sheng LIN, Chong WANG, Justin LII
  • Patent number: 9684141
    Abstract: Techniques are disclosed for filling gaps formed between a press-fit component and an optical subassembly housing to introduce a seal or barrier that can prevent or otherwise mitigate the ingress of contaminants. In an embodiment, a layer of sealant material is applied to one or more surfaces of an optical component prior to press-fitting the component into an optical subassembly housing. Alternatively, or in addition to applying sealant to one or more surfaces of an optical component, a layer of sealant material may be disposed on an interface formed between an outer surface of the optical subassembly housing and the optical component press-fit into the same. Techniques disclosed herein are particularly well suited for small form-factor optical subassemblies that include one or more optical components press-fit into openings of a subassembly housing during manufacturing.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: June 20, 2017
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Hao-Hsiang Liao, Justin Lii
  • Patent number: 9614620
    Abstract: A coaxial transmitter optical subassembly (TOSA) including a cuboid type TO laser package may be used in an optical transceiver for transmitting an optical signal at a channel wavelength. The cuboid type TO laser package is made of a thermally conductive material and has substantially flat outer surfaces that may be thermally coupled to substantially flat outer surfaces on a transceiver housing and/or on other cuboid type TO laser packages. An optical transceiver may include multiple coaxial TOSAs with the cuboid type TO laser packages stacked in the transceiver housing. The cuboid type TO laser package may thus provide improved thermal characteristics and a reduced size within the optical transceiver.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: April 4, 2017
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Chong Wang, Justin Lii, Zhengyu Miao
  • Patent number: 9606145
    Abstract: A test fixture generally includes a thermoelectric cooler (TEC) configured to regulate the temperature of a device under test (DUT). The test fixture may further include a device carrier configured to secure the DUT in a desired position relative to the TEC and a spring-operated pin configured to generate a desired contact pressure between the DUT and the TEC. The desired contact pressure may be selected to achieve a thermal coupling between the DUT and the TEC that maintains the temperature of the DUT at a desired operation level.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: March 28, 2017
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Luohan Peng, Darren Tucker, Justin Lii, David Hendricks
  • Publication number: 20170059786
    Abstract: The present disclosure is directed to a keyed optical component assembly that ensures that the same has a proper orientation when press-fit into or otherwise coupled to a complimentary opening of an optical subassembly housing. In an embodiment, the keyed optical component assembly includes a base portion defined by a first end and a second end disposed opposite the first end along a longitudinal axis. A first arcuate region extends from the first end towards the second end and transitions into a tapered region. A second arcuate region extends from the second end towards the first end and also transitions into the tapered region. Therefore, the tapered region extends between the first arcuate region and the second arcuate region, and generally tapers/narrows from the second arcuate region to the first arcuate region. The resulting shape of the base portion may generally be described as an asymmetric tear-drop shape.
    Type: Application
    Filed: August 19, 2016
    Publication date: March 2, 2017
    Inventors: Kai-Sheng LIN, Justin LII, Hao-Hsiang LIAO
  • Publication number: 20160041202
    Abstract: A test fixture generally includes a thermoelectric cooler (TEC) configured to regulate the temperature of a device under test (DUT). The test fixture may further include a device carrier configured to secure the DUT in a desired position relative to the TEC and a spring-operated pin configured to generate a desired contact pressure between the DUT and the TEC. The desired contact pressure may be selected to achieve a thermal coupling between the DUT and the TEC that maintains the temperature of the DUT at a desired operation level.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 11, 2016
    Inventors: Luohan Peng, Darren Tucker, Justin Lii, David Hendricks
  • Publication number: 20150256261
    Abstract: A coaxial transmitter optical subassembly (TOSA) including a cuboid type TO laser package may be used in an optical transceiver for transmitting an optical signal at a channel wavelength. The cuboid type TO laser package is made of a thermally conductive material and has substantially flat outer surfaces that may be thermally coupled to substantially flat outer surfaces on a transceiver housing and/or on other cuboid type TO laser packages. An optical transceiver may include multiple coaxial TOSAs with the cuboid type TO laser packages stacked in the transceiver housing. The cuboid type TO laser package may thus provide improved thermal characteristics and a reduced size within the optical transceiver.
    Type: Application
    Filed: May 22, 2015
    Publication date: September 10, 2015
    Inventors: I-Lung Ho, Chong Wang, Justin Lii, Zhengyu Miao
  • Patent number: 9039303
    Abstract: A compact multi-channel optical may include a multi-channel transmitter optical subassembly (TOSA), a multi-channel receiver optical subassembly (ROSA) and a circuit board configured and arranged to fit within a relatively small space. The multi-channel ROSA is spaced from the circuit board to allow circuit components to be mounted between the circuit board and the ROSA. The multi-channel ROSA may also be inverted and mounted proximate a transceiver top housing portion, for example, using an L-shaped ROSA support, to transfer heat from the ROSA to the transceiver housing portion. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: May 26, 2015
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Yi Wang, I-Lung Ho, Justin Lii
  • Patent number: 8995484
    Abstract: A temperature controlled multi-channel transmitter optical subassembly (TOSA) may be used in a multi-channel optical transceiver. The temperature controlled multi-channel TOSA generally includes an array of lasers optically coupled to an optical multiplexer, such as an arrayed waveguide grating (AWG), to combine multiple optical signals at different channel wavelengths. The lasers may be thermally tuned to the channel wavelengths by establishing a global temperature for the array of lasers and separately raising local temperatures of individual lasers in response to monitored wavelengths associated with the lasers. A temperature control device, such as a TEC cooler coupled to the laser array, may provide the global temperature and individual heaters, such as resistors adjacent respective lasers, may provide the local temperatures. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: March 31, 2015
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Chong Wang, Justin Lii
  • Publication number: 20140341580
    Abstract: A compact multi-channel optical may include a multi-channel transmitter optical subassembly (TOSA), a multi-channel receiver optical subassembly (ROSA) and a circuit board configured and arranged to fit within a relatively small space. The multi-channel ROSA is spaced from the circuit board to allow circuit components to be mounted between the circuit board and the ROSA. The multi-channel ROSA may also be inverted and mounted proximate a transceiver top housing portion, for example, using an L-shaped ROSA support, to transfer heat from the ROSA to the transceiver housing portion. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
    Type: Application
    Filed: May 14, 2013
    Publication date: November 20, 2014
    Applicant: Applied Optoelectronics, Inc.
    Inventors: Yi Wang, I-Lung Ho, Justin Lii