Patents by Inventor Justin Max

Justin Max has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240054998
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 15, 2024
    Applicant: Google LLC
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Patent number: 11804218
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: October 31, 2023
    Assignee: Google LLC
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Publication number: 20210166682
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Application
    Filed: February 10, 2021
    Publication date: June 3, 2021
    Applicant: Google LLC
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Patent number: 10957312
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: March 23, 2021
    Assignee: Google LLC
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Publication number: 20200211537
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Application
    Filed: December 31, 2019
    Publication date: July 2, 2020
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Patent number: 10565987
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: February 18, 2020
    Assignee: Google LLC
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Publication number: 20190272824
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 5, 2019
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Patent number: 10229675
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: March 12, 2019
    Assignee: Google LLC
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Publication number: 20170358297
    Abstract: This document generally describes systems and methods for dynamically adapting speech recognition for individual voice queries of a user using class-based language models. The method may include receiving a voice query from a user that includes audio data corresponding to an utterance of the user, and context data associated with the user. One or more class models are then generated that collectively identify a first set of terms determined based on the context data, and a respective class to which the respective term is assigned for each respective term in the first set of terms. A language model that includes a residual unigram may then be accessed and processed for each respective class to insert a respective class symbol at each instance of the residual unigram that occurs within the language model. A transcription of the utterance of the user is then generated using the modified language model.
    Type: Application
    Filed: December 30, 2016
    Publication date: December 14, 2017
    Inventors: Justin Max Scheiner, Petar Aleksic
  • Patent number: 6878650
    Abstract: A method is provided for producing fine denier multicomponent thermoplastic polymer filaments incorporating high melt-flow rate polymers. Multicomponent filaments are extruded such that the high melt-flow rate polymer component is substantially surrounded by one or more low melt-flow rate polymer components. The extruded multicomponent filament is then melt-attenuated with a significant drawing force to reduce the filament diameter and form continuous, fine denier filaments.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: April 12, 2005
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Darryl Franklin Clark, Justin Max Duellman, Bryan David Haynes, Jeffrey Lawrence McManus, Kevin Edward Smith
  • Publication number: 20040161992
    Abstract: The present invention provides multicomponent fine fiber webs and multilayer laminates thereof having an average fiber diameter less than about 7 micrometers and comprising a first olefin polymer component and a second distinct polymer component such as an amorphous polyolefin or polyamide. Multilayer laminates incorporating the fine multicomponent fiber webs are also provided such as, for example, spunbond/meltblown/spunbond laminates or spunbond/meltblown/meltblown/spunbond laminates. The fine multicomponent fiber webs and laminates thereof provide laminates having excellent softness, peel strength and/or controlled permeability.
    Type: Application
    Filed: February 12, 2004
    Publication date: August 19, 2004
    Inventors: Darryl Franklin Clark, Justin Max Duellman, Bryan David Haynes, Matthew Boyd Lake, Jeffrey Lawrence McManus, Kevin Edward Smith
  • Patent number: 6723669
    Abstract: The present invention provides multicomponent fine fiber webs and multilayer laminates thereof having an average fiber diameter less than about 7 micrometers and comprising a first olefin polymer component and a second distinct polymer component such as an amorphous polyolefin or polyamide. Multilayer laminates incorporating the fine multicomponent fiber webs are also provided such as, for example, spunbond/meltblown/spunbond laminates or spunbond/meltblown/meltblown/spunbond laminates. The fine multicomponent fiber webs and laminates thereof provide laminates having excellent softness, peel strength and/or controlled permeability.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: April 20, 2004
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Darryl Franklin Clark, Justin Max Duellman, Bryan David Haynes, Matthew Boyd Lake, Jeffrey Lawrence McManus, Kevin Edward Smith
  • Patent number: 6686303
    Abstract: An improved nonwoven web composite is formed by combining splittable bicomponent thermoplastic filaments with a component selected from other fibers and particles. The bicomponent filaments include distinct regions of first and second incompatible polymers extending the length of the filaments. After the bicomponent filaments are combined with the other fibers and/or particles, the bicomponent filaments are caused to split lengthwise along boundaries between the regions of different polymers, resulting in a web or matrix of finer filaments which entrap, ensnare and contain the other fibers and/or particles within the web or matrix. The nonwoven web composite is particularly useful for making absorbent articles, which require durability and optimum levels of absorbent fibers and/or particles.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: February 3, 2004
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Bryan David Haynes, Billy Dean Arnold, Justin Max Duellman, Ryan Clinton Frank, Jeffrey Lawrence McManus, Charles Allen Smith, Ty Jackson Stokes, Kevin Edward Smith, Darryl Franklin Clark, Debra Jean McDowall, Samuel Edward Marmon, Christopher Cosgrove Creagan, Xin Ning, David Lewis Myers
  • Patent number: 6613268
    Abstract: A method for producing super fine meltblown fibers increases the length of the meltblown jet thermal core to increase the dwell time of the extruded thermoplastic polymer within the jet thermal core. Through use of the method it is practical to use low viscosity resins and further to provide meltblown nonwovens with superior barrier properties to the passage of fluids and particularly gases. The method further provides a useful means for blooming internal additives to the surface of the fibers.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: September 2, 2003
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Bryan David Haynes, Jeffrey Lawrence McManus, Justin Max Duellman, Darryl Franklin Clark, Roger Bradshaw Quincy, III
  • Patent number: 6589892
    Abstract: An improved nonwoven web composite is formed by combining bicomponent thermoplastic filaments having adhesive properties with a component selected from other fibers and particles. The bicomponent filaments include distinct regions of first and second incompatible polymers across a cross-section of individual filaments. After the bicomponent filaments are combined with the other fibers and/or particles, the adhesive properties of the bicomponent filaments result in a web or matrix of filaments having improved ability to entrap, ensnare and contain the other fibers and/or particles within the web or matrix. The nonwoven web composite is particularly useful for making absorbent articles, which require stability and optimum levels of absorbent fibers and/or particles.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: July 8, 2003
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Kevin Edward Smith, Bryan David Haynes, Justin Max Duellman, Ann Louise McCormack, Jeffrey Lawrence McManus, Charles Allen Smith, Debra Jean McDowall, Samuel Edward Marmon, Christopher Cosgrove Creagan, Xin Ning, David Lewis Myers, Darryl Franklin Clark
  • Publication number: 20020117782
    Abstract: A method for producing super fine meltblown fibers increases the length of the meltblown jet thermal core to increase the dwell time of the extruded thermoplastic polymer within the jet thermal core. Through use of the method it is practical to use low viscosity resins and further to provide meltblown nonwovens with superior barrier properties to the passage of fluids and particularly gases. The method further provides a useful means for blooming internal additives to the surface of the fibers.
    Type: Application
    Filed: December 21, 2000
    Publication date: August 29, 2002
    Inventors: Bryan David Haynes, Jeffrey Lawrence McManus, Justin Max Duellman, Darryl Franklin Clark, Roger Bradshaw Quincy
  • Publication number: 20020009941
    Abstract: A method is provided for producing fine denier multicomponent thermoplastic polymer filaments incorporating high melt-flow rate polymers. Multicomponent filaments are extruded such that the high melt-flow rate polymer component is substantially surrounded by one or more low melt-flow rate polymer components. The extruded multicomponent filament is then melt-attenuated with a significant drawing force to reduce the filament diameter and form continuous, fine denier filaments.
    Type: Application
    Filed: December 20, 2000
    Publication date: January 24, 2002
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Darryl Franklin Clark, Justin Max Duellman, Bryan David Haynes, Jeffrey Lawrence McManus, Kevin Edward Smith
  • Patent number: D1012126
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: January 23, 2024
    Assignee: JUVYOU (EUROPE) LIMITED
    Inventors: Joshua Christian Anthony, Justin Max, Matthew Flick, Amy Sacchetta