Patents by Inventor Jyoti Bhardwaj

Jyoti Bhardwaj has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11984540
    Abstract: An inorganic coating may be applied to bond optically scattering particles or components. Optically scattering particles bonded via the inorganic coating may form a three dimensional film which can receive a light emission, convert, and emit the light emission with one or more changed properties. The inorganic coating may be deposited using a low-pressure deposition technique such as an atomic layer deposition (ALD) technique. Two or more components, such as an LED and a ceramic phosphor layer may be bonded together by depositing an inorganic coating using the ALD technique.
    Type: Grant
    Filed: December 20, 2022
    Date of Patent: May 14, 2024
    Assignee: Lumileds LLC
    Inventors: Michael Camras, Jyoti Bhardwaj, Peter Josef Schmidt, Niels Jeroen Van Der Veen
  • Publication number: 20230207741
    Abstract: An inorganic coating may be applied to bond optically scattering particles or components. Optically scattering particles bonded via the inorganic coating may form a three dimensional film which can receive a light emission, convert, and emit the light emission with one or more changed properties. The inorganic coating may be deposited using a low-pressure deposition technique such as an atomic layer deposition (ALD) technique. Two or more components, such as an LED and a ceramic phosphor layer may be bonded together by depositing an inorganic coating using the ALD technique.
    Type: Application
    Filed: December 20, 2022
    Publication date: June 29, 2023
    Applicant: LUMILEDS LLC
    Inventors: Michael CAMRAS, Jyoti BHARDWAJ, Peter Josef SCHMIDT, Niels Jeroen VAN DER VEEN
  • Publication number: 20230045625
    Abstract: Systems for apparatuses formed of light emitting devices. Solutions for controlling the off-state appearance of lighting system designs is disclosed. Thermochromic materials are selected in accordance with a desired off-state of an LED device. The thermochromic materials are applied to a structure that is in a light path of light emitted by the LED device. In the off-state the LED device produces a desired off-state colored appearance. When the LED device is in the on-state, the thermochromic materials heat up and become more and more transparent. The light emitted from the device in its on-state does not suffer from color shifting due to the presence of the thermochromic materials. Furthermore, light emitted from the LED device in its on-state does not suffer from attenuation due to the presence of the thermochromic materials. Techniques to select and position thermochromic materials in or around LED apparatuses are presented.
    Type: Application
    Filed: October 12, 2022
    Publication date: February 9, 2023
    Applicant: Lumileds LLC
    Inventors: Hisashi Masui, Oleg Shchekin, Ken Shimizu, Marcel Bohmer, Frank Jin, Jyoti Bhardwaj
  • Patent number: 11563150
    Abstract: An inorganic coating may be applied to bond optically scattering particles or components. Optically scattering particles bonded via the inorganic coating may form a three dimensional film which can receive a light emission, convert, and emit the light emission with one or more changed properties. The inorganic coating may be deposited using a low-pressure deposition technique such as an atomic layer deposition (ALD) technique. Two or more components, such as an LED and a ceramic phosphor layer may be bonded together by depositing an inorganic coating using the ALD technique.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: January 24, 2023
    Assignee: Lumileds LLC
    Inventors: Michael Camras, Jyoti Bhardwaj, Peter Josef Schmidt, Niels Jeroen Van Der Veen
  • Patent number: 11494180
    Abstract: The disclosed embodiments include methods and systems for providing predictive quality analysis. Consistent with disclosed embodiments, a system may receive input data associated with a software program and compare the input data with one or more predetermined analysis parameters. The system may further determine at least one risk rating based on the comparison, wherein each risk rating corresponds to a distinct software category. The system may perform additional operations, including determining at least one adjustment to the software program based on the determined at least one risk rating, and prioritizing the at least one adjustment based on a predetermined adjustment priority standard. Furthermore, the system may provide a report including at least an indication of the at least one prioritized adjustment, a timeline for implementing the at least one prioritized adjustment, and plan implementing the at least one prioritized adjustment.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: November 8, 2022
    Assignee: Capital One Services, LLC
    Inventor: Jyoti Bhardwaj
  • Patent number: 11486562
    Abstract: Systems for apparatuses formed of light emitting devices. Solutions for controlling the off-state appearance of lighting system designs is disclosed. Thermochromic materials are selected in accordance with a desired off-state of an LED device. The thermochromic materials are applied to a structure that is in a light path of light emitted by the LED device. In the off-state the LED device produces a desired off-state colored appearance. When the LED device is in the on-state, the thermochromic materials heat up and become more and more transparent. The light emitted from the device in its on-state does not suffer from color shifting due to the presence of the thermochromic materials. Furthermore, light emitted from the LED device in its on-state does not suffer from attenuation due to the presence of the thermochromic materials. Techniques to select and position thermochromic materials in or around LED apparatuses are presented.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: November 1, 2022
    Assignee: Lumileds LLC
    Inventors: Hisashi Masui, Oleg Shchekin, Ken Shimizu, Marcel Bohmer, Frank Jin, Jyoti Bhardwaj
  • Patent number: 11374155
    Abstract: A method to make light-emitting diode (LED) units include arranging LEDs in a pattern, forming an optically transparent spacer layer over the LEDs, forming an optically reflective layer over the LEDs, and singulating the LEDs into LED units. The method may further include, after forming the optically transparent spacer layer and before singulating the LEDs, forming a secondary light-emitting layer that conforms to the LEDs, cutting the LEDs to form LED groups having a same arrangement, spacing the LED groups on a support, and forming the optically reflective layer in spaces between the LED groups.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: June 28, 2022
    Assignee: Lumileds LLC
    Inventors: Frederic Stephane Diana, Erno Fancsali, Thierry De Smet, Gregory Donald Guth, Yourii Martynov, Oleg B. Shchekin, Jyoti Bhardwaj
  • Publication number: 20210291724
    Abstract: A vehicle headlamp system includes a vehicle supported power and control system including a data bus. A sensor module can be connected to the data bus to provide information related to environmental conditions or information relating to presence and position of other vehicles and pedestrians. A separate headlamp controller can be connected to the vehicle supported power and control system and the sensor module through the bus. The headlamp controller can include an image frame buffer that can refresh held images at greater than 30 z speed. An active LED pixel array can be connected to the headlamp controller to project light according to a pattern and intensity defined by the image held in the image frame buffer and a standby image buffer can be connected to the image frame buffer to hold a default image.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 23, 2021
    Inventors: Ronald Johannes Bonne, Jyoti Bhardwaj
  • Publication number: 20210240470
    Abstract: The disclosed embodiments include methods and systems for providing predictive quality analysis. Consistent with disclosed embodiments, a system may receive input data associated with a software program and compare the input data with one or more predetermined analysis parameters. The system may further determine at least one risk rating based on the comparison, wherein each risk rating corresponds to a distinct software category. The system may perform additional operations, including determining at least one adjustment to the software program based on the determined at least one risk rating, and prioritizing the at least one adjustment based on a predetermined adjustment priority standard.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Applicant: Capital One Services, LLC
    Inventor: Jyoti BHARDWAJ
  • Patent number: 10996943
    Abstract: The disclosed embodiments include methods and systems for providing predictive quality analysis. Consistent with disclosed embodiments, a system may receive input data associated with a software program and compare the input data with one or more predetermined analysis parameters. The system may further determine at least one risk rating based on the comparison, wherein each risk rating corresponds to a distinct software category. The system may perform additional operations, including determining at least one adjustment to the software program based on the determined at least one risk rating, and prioritizing the at least one adjustment based on a predetermined adjustment priority standard. Furthermore, the system may provide a report including at least an indication of the at least one prioritized adjustment, a timeline for implementing the at least one prioritized adjustment, and plan implementing the at least one prioritized adjustment.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: May 4, 2021
    Assignee: Capital One Services, LLC
    Inventor: Jyoti Bhardwaj
  • Publication number: 20210119085
    Abstract: An inorganic coating may be applied to bond optically scattering particles or components. Optically scattering particles bonded via the inorganic coating may form a three dimensional film which can receive a light emission, convert, and emit the light emission with one or more changed properties. The inorganic coating may be deposited using a low-pressure deposition technique such as an atomic layer deposition (ALD) technique. Two or more components, such as an LED and a ceramic phosphor layer may be bonded together by depositing an inorganic coating using the ALD technique.
    Type: Application
    Filed: December 21, 2020
    Publication date: April 22, 2021
    Applicant: LUMILEDS LLC
    Inventors: Michael CAMRAS, Jyoti BHARDWAJ, Peter Josef SCHMIDT, Niels Jeroen VAN DER VEEN
  • Publication number: 20210013380
    Abstract: Systems for apparatuses formed of light emitting devices. Solutions for controlling the off-state appearance of lighting system designs is disclosed. Thermochromic materials are selected in accordance with a desired off-state of an LED device. The thermochromic materials are applied to a structure that is in a light path of light emitted by the LED device. In the off-state the LED device produces a desired off-state colored appearance. When the LED device is in the on-state, the thermochromic materials heat up and become more and more transparent. The light emitted from the device in its on-state does not suffer from color shifting due to the presence of the thermochromic materials. Furthermore, light emitted from the LED device in its on-state does not suffer from attenuation due to the presence of the thermochromic materials. Techniques to select and position thermochromic materials in or around LED apparatuses are presented.
    Type: Application
    Filed: September 22, 2020
    Publication date: January 14, 2021
    Applicant: LUMILEDS LLC
    Inventors: Hisashi MASUI, Okeg SHCHEKIN, Ken SHIMIZU, Marcel BOHMER, Frank JIN, Jyoti BHARDWAJ
  • Patent number: 10886437
    Abstract: An inorganic coating may be applied to bond optically scattering particles or components. Optically scattering particles bonded via the inorganic coating may form a three dimensional film which can receive a light emission, convert, and emit the light emission with one or more changed properties. The inorganic coating may be deposited using a low-pressure deposition technique such as an atomic layer deposition (ALD) technique. Two or more components, such as an LED and a ceramic phosphor layer may be bonded together by depositing an inorganic coating using the ALD technique.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: January 5, 2021
    Assignee: Lumileds LLC
    Inventors: Michael Camras, Jyoti Bhardwaj, Peter J. Schmidt, Niels Jeroen Van Der Veen
  • Patent number: 10797206
    Abstract: Systems for apparatuses formed of light emitting devices. Solutions for controlling the off-state appearance of lighting system designs is disclosed. Thermochromic materials are selected in accordance with a desired off-state of an LED device. The thermochromic materials are applied to a structure that is in a light path of light emitted by the LED device. In the off-state the LED device produces a desired off-state colored appearance. When the LED device is in the on-state, the thermochromic materials heat up and become more and more transparent. The light emitted from the device in its on-state does not suffer from color shifting due to the presence of the thermochromic materials. Furthermore, light emitted from the LED device in its on-state does not suffer from attenuation due to the presence of the thermochromic materials. Techniques to select and position thermochromic materials in or around LED apparatuses are presented.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: October 6, 2020
    Assignee: LUMILEDS LLC
    Inventors: Hisashi Masui, Oleg Shchekin, Ken Shimizu, Marcel Bohmer, Frank Jin, Jyoti Bhardwaj
  • Publication number: 20200279985
    Abstract: A method to make light-emitting diode (LED) units include arranging LEDs in a pattern, forming an optically transparent spacer layer over the LEDs, forming an optically reflective layer over the LEDs, and singulating the LEDs into LED units. The method may further include, after forming the optically transparent spacer layer and before singulating the LEDs, forming a secondary light-emitting layer that conforms to the LEDs, cutting the LEDs to form LED groups having a same arrangement, spacing the LED groups on a support, and forming the optically reflective layer in spaces between the LED groups.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Frederic Stephane Diana, Erno Fancsali, Thierry De Smet, Gregory Donald Guth, Yourii Martynov, Oleg B. Shchekin, Jyoti Bhardwaj
  • Patent number: 10693048
    Abstract: A method to make light-emitting diode (LED) units include arranging LEDs in a pattern, forming an optically transparent spacer layer over the LEDs, forming an optically reflective layer over the LEDs, and singulating the LEDs into LED units. The method may further include, after forming the optically transparent spacer layer and before singulating the LEDs, forming a secondary light-emitting layer that conforms to the LEDs, cutting the LEDs to form LED groups having a same arrangement, spacing the LED groups on a support, and forming the optically reflective layer in spaces between the LED groups.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: June 23, 2020
    Assignee: Lumileds LLC
    Inventors: Frederic S. Diana, Emo Fancsali, Thierry De Smet, Gregory Guth, Yourii Martynov, Oleg B. Shchekin, Jyoti Bhardwaj
  • Publication number: 20200125359
    Abstract: The disclosed embodiments include methods and systems for providing predictive quality analysis. Consistent with disclosed embodiments, a system may receive input data associated with a software program and compare the input data with one or more predetermined analysis parameters. The system may further determine at least one risk rating based on the comparison, wherein each risk rating corresponds to a distinct software category. The system may perform additional operations, including determining at least one adjustment to the software program based on the determined at least one risk rating, and prioritizing the at least one adjustment based on a predetermined adjustment priority standard. Furthermore, the system may provide a report including at least an indication of the at least one prioritized adjustment, a timeline for implementing the at least one prioritized adjustment, and plan implementing the at least one prioritized adjustment.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Applicant: Capital One Services, LLC
    Inventor: Jyoti BHARDWAJ
  • Patent number: 10528340
    Abstract: The disclosed embodiments include methods and systems for providing predictive quality analysis. Consistent with disclosed embodiments, a system may receive input data associated with a software program and compare the input data with one or more predetermined analysis parameters. The system may further determine at least one risk rating based on the comparison, wherein each risk rating corresponds to a distinct software category. The system may perform additional operations, including determining at least one adjustment to the software program based on the determined at least one risk rating, and prioritizing the at least one adjustment based on a predetermined adjustment priority standard. Furthermore, the system may provide a report including at least an indication of the at least one prioritized adjustment, a timeline for implementing the at least one prioritized adjustment, and plan implementing the at least one prioritized adjustment.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: January 7, 2020
    Assignee: Capital One Services, LLC
    Inventor: Jyoti Bhardwaj
  • Publication number: 20190088840
    Abstract: A method to make light-emitting diode (LED) units include arranging LEDs in a pattern, forming an optically transparent spacer layer over the LEDs, forming an optically reflective layer over the LEDs, and singulating the LEDs into LED units. The method may further include, after forming the optically transparent spacer layer and before singulating the LEDs, forming a secondary light-emitting layer that conforms to the LEDs, cutting the LEDs to form LED groups having a same arrangement, spacing the LED groups on a support, and forming the optically reflective layer in spaces between the LED groups.
    Type: Application
    Filed: September 2, 2016
    Publication date: March 21, 2019
    Applicant: Lumileds Holding B.V.
    Inventors: Frederic S. DIANA, Erno FANCSALI, Thierry DE SMET, Gregory GUTH, Yourii MARTYNOV, Oleg B. SHCHEKIN, Jyoti BHARDWAJ
  • Publication number: 20180374999
    Abstract: Systems for apparatuses formed of light emitting devices. Solutions for controlling the off-state appearance of lighting system designs is disclosed. Thermochromic materials are selected in accordance with a desired off-state of an LED device. The thermochromic materials are applied to a structure that is in a light path of light emitted by the LED device. In the off-state the LED device produces a desired off-state colored appearance. When the LED device is in the on-state, the thermochromic materials heat up and become more and more transparent. The light emitted from the device in its on-state does not suffer from color shifting due to the presence of the thermochromic materials. Furthermore, light emitted from the LED device in its on-state does not suffer from attenuation due to the presence of the thermochromic materials. Techniques to select and position thermochromic materials in or around LED apparatuses are presented.
    Type: Application
    Filed: June 28, 2016
    Publication date: December 27, 2018
    Applicant: Lumileds LLC
    Inventors: Hisashi MASUI, Oleg SHCHEKIN, Ken SHIMIZU, Marcel BOHMER, Frank JIN, Jyoti BHARDWAJ