Patents by Inventor Jyoti K. Bhardwaj

Jyoti K. Bhardwaj has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8638113
    Abstract: A wafer-scale probe card for temporary electrical contact to a sample wafer or other device, for burn-in and test. The card includes a plurality of directly metallized single-walled or multi-walled nanotubes contacting a pre-arranged electrical contact pattern on the probe card substrate. The nanotubes are arranged into bundles for forming electrical contacts between areas of the device under test and the probe card. The bundles are compressible along their length to allow a compressive force to be used for contacting the probe card substrate to the device under test. A strengthening material may be disposed around and/or infiltrate the bundles. The nanotubes forming the bundles may be patterned to provide a pre-determined bundle profile. Tips of the bundles may be metallized with a conductive material to form a conformal coating on the bundles; or metallized with a conductive material to form a continuous, single contact surface.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: January 28, 2014
    Assignee: FormFactor, Inc.
    Inventors: Douglas E. Crafts, Jyoti K. Bhardwaj
  • Patent number: 8340523
    Abstract: A tunable PLC optical filter having sequentially connected thermally tunable Mach-Zehnder (MZ) interferometers is described. The MZ interferometers, having free spectral ranges matching ITU frequency grid spacing, are tuned so as to have a common passband centered on the frequency of the signal being selected, while having at least one of the stopbands centered on any other ITU frequency. Any other optical channel that may be present at any other ITU frequency is suppressed as a result. The PLC chip, including a zero-dispersion lattice-filter interleaver stage, a switchable fine-resolution stage and, or a retroreflector for double passing the filter, is packaged into a hot-pluggable XFP transceiver package. A compensation heater is used to keep constant the amount of heat applied to the PLC chip inside the XFP package, so as to lessen temperature variations upon tuning of the PLC optical filter.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: December 25, 2012
    Assignee: JDS Uniphase Corporation
    Inventors: Jinxi Shen, Jyoti K. Bhardwaj, Barthelemy Fondeur, Douglas E. Crafts, Robert J. Brainard, Boping Xie, David J. Chapman
  • Patent number: 8285144
    Abstract: An optical device for rearranging wavelength channels in an optical network is disclosed. The optical device has a wavelength selective coupler having one input port and a plurality of output ports coupled to a plurality of input ports of an optical grating demultiplexor such as an arrayed waveguide grating. The wavelength channels in each of the input ports are dispersed by the demultiplexor and are directed to a plurality of output ports of the optical grating demultiplexor. As a result, at least one wavelength channel at each of the input ports of the optical grating demultiplexor is coupled into a common output port. The optical device is useful in passive optical networks wherein a same demultiplexor is used for simultaneous multiplexing and demultiplexing of wavelength channels.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: October 9, 2012
    Assignee: JDS Uniphase Corporation
    Inventors: Hiroaki Yamada, Barthelemy Fondeur, Jinxi Shen, Zi-Wen Dong, Domenico Di Mola, Jyoti K. Bhardwaj, Yimin Hua
  • Publication number: 20110052189
    Abstract: An optical device for rearranging wavelength channels in an optical network is disclosed. The optical device has a wavelength selective coupler having one input port and a plurality of output ports coupled to a plurality of input ports of an optical grating demultiplexor such as an arrayed waveguide grating. The wavelength channels in each of the input ports are dispersed by the demultiplexor and are directed to a plurality of output ports of the optical grating demultiplexor. As a result, at least one wavelength channel at each of the input ports of the optical grating demultiplexor is coupled into a common output port. The optical device is useful in passive optical networks wherein a same demultiplexor is used for simultaneous multiplexing and demultiplexing of wavelength channels.
    Type: Application
    Filed: July 30, 2010
    Publication date: March 3, 2011
    Inventors: Hiroaki Yamada, Barthelemy Fondeur, Jinxi Shen, Zi-Wen Dong, Domenico Di Mola, Jyoti K. Bhardwaj, Yimin Hua
  • Publication number: 20110018566
    Abstract: A wafer-scale probe card for temporary electrical contact to a sample wafer or other device, for burn-in and test. The card includes a plurality of directly metallized single-walled or multi-walled nanotubes contacting a pre-arranged electrical contact pattern on the probe card substrate. The nanotubes are arranged into bundles for forming electrical contacts between areas of the device under test and the probe card. The bundles are compressible along their length to allow a compressive force to be used for contacting the probe card substrate to the device under test. A strengthening material may be disposed around and/or infiltrate the bundles. The nanotubes forming the bundles may be patterned to provide a pre-determined bundle profile. Tips of the bundles may be metallized with a conductive material to form a conformal coating on the bundles; or metallized with a conductive material to form a continuous, single contact surface.
    Type: Application
    Filed: May 4, 2010
    Publication date: January 27, 2011
    Inventors: Douglas E. CRAFTS, Jyoti K. BHARDWAJ
  • Patent number: 7710106
    Abstract: A wafer-scale probe card for temporary electrical contact to a sample wafer or other device, for burn-in and test. The card includes a plurality of directly metallized single-walled or multi-walled nanotubes contacting a pre-arranged electrical contact pattern on the probe card substrate. The nanotubes are arranged into bundles for forming electrical contacts between areas of the device under test and the probe card. The bundles are compressible along their length to allow a compressive force to be used for contacting the probe card substrate to the device under test. A strengthening material may be disposed around and/or infiltrate the bundles. The nanotubes forming the bundles may be patterned to provide a pre-determined bundle profile. Tips of the bundles may be metallized with a conductive material to form a conformal coating on the bundles; or metallized with a conductive material to form a continuous, single contact surface.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: May 4, 2010
    Inventors: Douglas E. Crafts, Jyoti K. Bhardwaj
  • Publication number: 20090263142
    Abstract: A tunable PLC optical filter having sequentially connected thermally tunable Mach-Zehnder (MZ) interferometers is described. The MZ interferometers, having free spectral ranges matching ITU frequency grid spacing, are tuned so as to have a common passband centered on the frequency of the signal being selected, while having at least one of the stopbands centered on any other ITU frequency. Any other optical channel that may be present at any other ITU frequency is suppressed as a result. The PLC chip, including a zero-dispersion lattice-filter interleaver stage, a switchable fine-resolution stage and, or a retroreflector for double passing the filter, is packaged into a hot-pluggable XFP transceiver package. A compensation heater is used to keep constant the amount of heat applied to the PLC chip inside the XFP package, so as to lessen temperature variations upon tuning of the PLC optical filter.
    Type: Application
    Filed: February 20, 2009
    Publication date: October 22, 2009
    Inventors: Jinxi Shen, Jyoti K. Bhardwaj, Barthelemy Fondeur, Douglas E. Crafts, Robert J. Brainard, Boping Xie, David J. Chapman
  • Publication number: 20090121732
    Abstract: A wafer-scale probe card for temporary electrical contact to a sample wafer or other device, for burn-in and test. The card includes a plurality of directly metallized single-walled or multi-walled nanotubes contacting a pre-arranged electrical contact pattern on the probe card substrate. The nanotubes are arranged into bundles for forming electrical contacts between areas of the device under test and the probe card. The bundles are compressible along their length to allow a compressive force to be used for contacting the probe card substrate to the device under test. A strengthening material may be disposed around and/or infiltrate the bundles. The nanotubes forming the bundles may be patterned to provide a pre-determined bundle profile. Tips of the bundles may be metallized with a conductive material to form a conformal coating on the bundles; or metallized with a conductive material to form a continuous, single contact surface.
    Type: Application
    Filed: September 16, 2008
    Publication date: May 14, 2009
    Inventors: Douglas E. CRAFTS, Jyoti K. BHARDWAJ
  • Patent number: 7439731
    Abstract: A wafer-scale probe card for temporary electrical contact to a sample wafer or other device, for burn-in and test. The card includes a plurality of directly metallized single-walled or multi-walled nanotubes contacting a pre-arranged electrical contact pattern on the probe card substrate. The nanotubes are arranged into bundles for forming electrical contacts between areas of the device under test and the probe card. The bundles are compressible along their length to allow a compressive force to be used for contacting the probe card substrate to the device under test. A strengthening material may be disposed around and/or infiltrate the bundles. The nanotubes forming the bundles may be patterned to provide a pre-determined bundle profile. Tips of the bundles may be metallized with a conductive material to form a conformal coating on the bundles; or metallized with a conductive material to form a continuous, single contact surface.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: October 21, 2008
    Inventors: Douglas E. Crafts, Jyoti K. Bhardwaj