Patents by Inventor K.T. Venkateswara Rao

K.T. Venkateswara Rao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090318949
    Abstract: A system for treating an aneurysm comprises at least a first double-walled filling structure having an outer wall and an inner wall and the filling structure is adapted to be filled with a hardenable fluid filling medium so that the outer wall conforms to the inside surface of the aneurysm and the inner surface forms a generally tubular lumen to provide blood flow. The first filling structure comprises a sealing feature which forms a fluid seal between the filling structure and the aneurysm or an adjacent endograft when the filling structure is filled with the hardenable fluid filling medium, thereby minimizing or preventing blood flow downstream of the seal.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 24, 2009
    Applicant: Nellix, Inc.
    Inventors: Raj P. Ganpath, Amy Lee, Craig Rosenberg, Sherwin Llamido, Steven L. Herbowy, Michael A. Evans, Thomas A. Howell, Charles S. Taylor, K.T. Venkateswara Rao
  • Publication number: 20090319029
    Abstract: A system for treating an aneurysm in a blood vessel comprises a docking scaffold having with upstream and downstream ends, and a central passageway therebetween. The upstream end engages the blood vessel upstream of the aneurysm. A portion of a first and second scaffolds are slidably received in the central passageway such that an outside surface of the first and second scaffolds engage an inside surface of the docking scaffold. A double-walled filling structure has outer and inner walls and the filling structure is adapted to be filled with a hardenable fluid filling medium so that the outer wall conforms to an inside surface of the aneurysm and the inner wall forms a substantially tubular lumen to provide a path for blood flow therethrough. The double-walled filling structure is coupled with at least one of the first and second leg scaffolds in expanded configuration.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 24, 2009
    Applicant: Nellix, Inc.
    Inventors: Michael A. Evans, Ivan Tzvetanov, Steven L. Herbowy, Raj P. Ganpath, Amy Lee, Anant Kumar, Gwendolyn A. Watanabe, K.T. Venkateswara Rao
  • Patent number: 7435255
    Abstract: An intravascular stent having a prefabricated, patterned tubular sleeve portion for controlled release of therapeutic drugs and for delivery of the therapeutic drugs in localized drug therapy in a blood vessel is disclosed. The patterned sleeve may be releasably attached to at least a portion of an outer surface of the stent structure. Alternatively, a plurality of individual filament strands are longitudinally arranged around an outer surface of a stent structure in a spaced apart orientation and loaded with at least one therapeutic drug for the release thereof at a treatment site. The stent has a high degree of flexibility in the longitudinal direction, yet has adequate vessel wall coverage and radial strength sufficient to hold open an artery or other body lumen. Methods for making the same are also disclosed.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: October 14, 2008
    Assignee: Advnaced Cardiovascular Systems, Inc.
    Inventor: K. T. Venkateswara Rao
  • Patent number: 7144422
    Abstract: An intravascular stent having a prefabricated, patterned polymeric sleeve for controlled release of therapeutic drugs and for delivery of the therapeutic drugs in localized drug therapy in a blood vessel is disclosed. The polymeric sleeve is attached to at least a portion of an outside surface area of the stent structure. Alternatively, a plurality of individual microfilament strands are longitudinally attached to an outer surface of a stent structure in a spaced apart orientation and loaded with at least one therapeutic drug for the release thereof at a treatment site. The stent has a high degree of flexibility in the longitudinal direction, yet has adequate vessel wall coverage and radial strength sufficient to hold open an artery or other body lumen. Methods for making the same are also disclosed.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: December 5, 2006
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: K. T. Venkateswara Rao
  • Publication number: 20050107864
    Abstract: A hybrid stent is formed which exhibits both high flexibility and high radial strength. The expandable hybrid stent for implantation in a body lumen, such as a coronary artery, consists of radially expandable cylindrical rings generally aligned on a common longitudinal axis and interconnected by one or more links. In one embodiment, a dip-coated covered stent is formed by encapsulating cylindrical rings within a polymer material. In other embodiments, at least some of the rings and links are formed of a polymer material which provides longitudinal and flexural flexibility to the stent. These polymer rings and links are alternated with metallic rings and links in various configurations to attain sufficient column strength along with the requisite flexibility in holding open the target site within the body lumen. Alternatively, a laminated, linkless hybrid stent is formed by encapsulating cylindrical rings within a polymer tube.
    Type: Application
    Filed: December 22, 2004
    Publication date: May 19, 2005
    Inventors: James Hong, Rahul Bhagat, Syed Hossainy, Santosh Prabhu, K.T. Venkateswara Rao, Ashok Shah, Srinivasan Sridharan
  • Patent number: 6866805
    Abstract: A hybrid stent is formed which exhibits both high flexibility and high radial strength. The expandable hybrid stent for implantation in a body lumen, such as a coronary artery, consists of radially expandable cylindrical rings generally aligned on a common longitudinal axis and interconnected by one or more links. In one embodiment, a dip-coated covered stent is formed by encapsulating cylindrical rings within a polymer material. In other embodiments, at least some of the rings and links are formed of a polymer material which provides longitudinal and flexural flexibility to the stent. These polymer rings and links are alternated with metallic rings and links in various configurations to attain sufficient column strength along with the requisite flexibility in holding open the target site within the body lumen. Alternatively, a laminated, linkless hybrid stent is formed by encapsulating cylindrical rings within a polymer tube.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: March 15, 2005
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: James Hong, Rahul Bhagat, Syed Hossainy, Santosh Prabhu, K.T. Venkateswara Rao, Ashok Shah, Srinivasan Sridharan
  • Publication number: 20040199242
    Abstract: A hybrid stent is formed which exhibits both high flexibility and high radial strength. The expandable hybrid stent for implantation in a body lumen, such as a coronary artery, consists of radially expandable cylindrical rings generally aligned on a common longitudinal axis and interconnected by one or more links. In one embodiment, a dip-coated covered stent is formed by encapsulating cylindrical rings within a polymer material. In other embodiments, at least some of the rings and links are formed of a polymer material which provides longitudinal and flexural flexibility to the stent. These polymer rings and links are alternated with metallic rings and links in various configurations to attain sufficient column strength along with the requisite flexibility in holding open the target site within the body lumen. Alternatively, a laminated, linkless hybrid stent is formed by encapsulating cylindrical rings within a polymer tube.
    Type: Application
    Filed: December 27, 2001
    Publication date: October 7, 2004
    Inventors: James Hong, Rahul Bhagat, Syed Hossainy, Santosh Prabhu, K.T. Venkateswara Rao, Ashok Shah, Srinivasan Sridharan