Patents by Inventor Ka-Man Venus Lai

Ka-Man Venus Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210105983
    Abstract: Non-human animals, methods and compositions for making and using the same, are provided, wherein said non-human animals comprise a humanization of a Cluster of Differentiation 274 (CD274) gene. Such non-human animals may be described, in some embodiments, as having a genetic modification to an endogenous CD274 gene so that said non-human animals express a Programmed cell death ligand 1 (PD-L) polypeptide that includes a human portion and an endogenous portion (e.g., a non-human portion).
    Type: Application
    Filed: December 3, 2020
    Publication date: April 15, 2021
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Elena Burova, Yajun Tang, Ka-Man Venus Lai, Andrew J. Murphy
  • Patent number: 10975390
    Abstract: Compositions and methods are provided for modifying a rat genomic locus of interest using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Compositions and methods for generating a genetically modified rat comprising one or more targeted genetic modifications in their germline are also provided. Compositions and methods are provided which comprise a genetically modified rat or rat cell comprising a targeted genetic modification in the rat interleukin-2 receptor gamma locus, the rat ApoE locus, the rat Rag2 locus, the rat Rag1 locus and/or the rat Rag2/Rag1 locus. The various methods and compositions provided herein allows for these modified loci to be transmitted through the germline.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: April 13, 2021
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Jeffrey D. Lee, Alexander O. Mujica, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Publication number: 20210100229
    Abstract: Non-human animals, expressing humanized CD3 proteins are provided. Non-human animals, e.g., rodents, genetically modified to comprise in their genome humanized CD3 proteins are also provided. Additionally, provided are methods and compositions of making such non-human animals, as well as methods of using said non-human animals.
    Type: Application
    Filed: December 10, 2020
    Publication date: April 8, 2021
    Inventors: Kara L. Olson, Eric Smith, Ka-Man Venus Lai, Andrew J. Murphy, Gavin Thurston, Dayong Guo
  • Patent number: 10932455
    Abstract: Non-human animals, expressing humanized CD3 proteins are provided. Non-human animals, e.g., rodents, genetically modified to comprise in their genome humanized CD3 proteins are also provided. Additionally, provided are methods and compositions of making such non-human animals, as well as methods of using said non-human animals.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: March 2, 2021
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Kara L. Olson, Eric Smith, Ka-Man Venus Lai, Andrew J. Murphy, Gavin Thurston, Dayong Guo
  • Patent number: 10894965
    Abstract: Compositions and methods are provided for making rat pluripotent and totipotent cells, including rat embryonic stem (ES) cells. Compositions and methods for improving efficiency or frequency of germline transmission of genetic modifications in rats are provided. Such methods and compositions comprise an in vitro culture comprising a feeder cell layer and a population of rat ES cells or a rat ES cell line, wherein the in vitro culture conditions maintain pluripotency of the ES cell and comprises a media having mouse leukemia inhibitory factor (LIF) or an active variant or fragment thereof. Various methods of establishing such rat ES cell lines are further provided. Methods of selecting genetically modified rat ES cells are also provided, along with various methods to generate a transgenic rat from the genetically modified rat ES cells provided herein. Various kits and articles of manufacture are further provided.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: January 19, 2021
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Jeffrey D. Lee, Wojtek Auerbach, David Heslin, David Frendewey, Ka-Man Venus Lai, David M. Valenzuela
  • Patent number: 10881086
    Abstract: Non-human animals, methods and compositions for making and using the same, are provided, wherein said non-human animals comprise a humanization of a Cluster of Differentiation 274 (CD274) gene. Such non-human animals may be described, in some embodiments, as having a genetic modification to an endogenous CD274 gene so that said non-human animals express a Programmed cell death ligand 1 (PD-L1) polypeptide that includes a human portion and an endogenous portion (e.g., a non-human portion).
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: January 5, 2021
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Elena Burova, Yajun Tang, Ka-Man Venus Lai, Andrew J. Murphy
  • Publication number: 20200370054
    Abstract: A non-human animal (e.g., a rodent) model for diseases associated with a C9ORF72 heterologous hexanucleotide repeat expansion sequence is provided, which non-human animal comprises a heterologous hexanucleotide repeat (GGGGCC) in an endogenous C9ORF72 locus. A non-human animal disclosed herein comprising a heterologous hexanucleotide repeat expansion sequence comprising at least one instance, e.g., repeat, of a hexanucleotide (GGGGCC) sequence may further exhibit a characteristic and/or phenotype associated with one or more neurodegenerative disorders (e.g., amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD), etc.). Methods of identifying therapeutic candidates that may be used to prevent, delay or treat one or more neurodegenerative (e.g., amyotrophic lateral sclerosis (ALS, also referred to as Lou Gehrig's disease) and frontotemporal dementia (FTD)) are also provided.
    Type: Application
    Filed: August 5, 2020
    Publication date: November 26, 2020
    Inventors: David Heslin, Roxanne Ally, Chia-Jen Siao, Ka-Man Venus Lai, David M. Valenzuela, Chunguang Guo, Michael LaCroix-Fralish, Lynn Macdonald, Aarti Sharma-Kanning, Daisuke Kajimura, Gustavo Droguett, David Frendewey, Alexander O. Mujica
  • Patent number: 10781453
    Abstract: A non-human animal (e.g., a rodent) model for diseases associated with a C9ORF72 heterologous hexanucleotide repeat expansion sequence is provided, which non-human animal comprises a heterologous hexanucleotide repeat (GGGGCC) in an endogenous C9ORF72 locus. A non-human animal disclosed herein comprising a heterologous hexanucleotide repeat expansion sequence comprising at least one instance, e.g., repeat, of a hexanucleotide (GGGGCC) sequence may further exhibit a characteristic and/or phenotype associated with one or more neurodegenerative disorders (e.g., amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD), etc.). Methods of identifying therapeutic candidates that may be used to prevent, delay or treat one or more neurodegenerative (e.g., amyotrophic lateral sclerosis (ALS, also referred to as Lou Gehrig's disease) and frontotemporal dementia (FTD)) are also provided.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 22, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: David Heslin, Roxanne Ally, Chia-Jen Siao, Ka-Man Venus Lai, David M. Valenzuela, Aarti Sharma-Kanning, Daisuke Kajimura, Gustavo Droguett, David Frendewey, Alexander O. Mujica
  • Publication number: 20200291425
    Abstract: Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR/Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Publication number: 20200275642
    Abstract: Non-human animals, expressing humanized CD3 proteins are provided. Non-human animals, e.g., rodents, genetically modified to comprise in their genome humanized CD3 proteins are also provided. Additionally, provided are methods and compositions of making such non-human animals, as well as methods of using said non-human animals.
    Type: Application
    Filed: May 11, 2020
    Publication date: September 3, 2020
    Inventors: Kara L. Olson, Eric Smith, Ka-Man Venus Lai, Andrew J. Murphy, Gavin Thurston, Dayong Guo
  • Publication number: 20200229409
    Abstract: This disclosure relates to an animal model of human disease. More specifically, this disclosure relates to a rodent model of mood disorders such as unipolar depression and an anxiety disorder. Disclosed herein are genetically modified rodent animals that carry a humanized G protein-coupled receptor 156 (GPR156) gene that encodes a mutant human GPR156 protein comprising Asp at an amino acid position corresponding to position 533 in a full length wild type human GPR156 protein.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 23, 2020
    Inventors: Meghan Drummond Samuelson, Brian Zambrowicz, Ka-Man Venus Lai, Charleen Hunt, Susannah Brydges, Andrew J. Murphy, Claudia Gonzaga-Jauregui, Jose Rojas, Nicole Alessandri-Haber, Robert Breese, Susan D. Croll
  • Patent number: 10711280
    Abstract: Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR/Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 14, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: David Frendewey, Wojtek Auerbach, Ka-Man Venus Lai, David M. Valenzuela, George D. Yancopoulos
  • Publication number: 20200208161
    Abstract: Methods are provided herein for assembling at least two nucleic acids using a sequence specific nuclease agent (e.g., a gRNA-Cas complex) to create end sequences having complementarity and subsequently assembling the overlapping complementary sequences. The nuclease agent (e.g., a gRNA-Cas complex) can create double strand breaks in dsDNA in order to create overlapping end sequences or can create nicks on each strand to produce complementary overhanging end sequences. Assembly using the method described herein can assemble any nucleic acids having overlapping sequences or can use a joiner oligo to assemble sequences without complementary ends.
    Type: Application
    Filed: March 11, 2020
    Publication date: July 2, 2020
    Applicant: REGENERON PHARMACEUTICALS, INC.
    Inventors: Chris Schoenherr, John McWhirter, Corey Momont, Caitlin L. Goshert, Lynn Macdonald, Gregg S. Warshaw, Jose F. Rojas, Ka-Man Venus Lai, David M. Valenzuela, Andrew J. Murphy
  • Publication number: 20200178508
    Abstract: Genetically modified non-human animals comprising a humanized interleukin-15 (IL-15) gene. Cells, embryos, and non-human animals comprising a human IL-15 gene. Rodents that express humanized or human IL-15 protein.
    Type: Application
    Filed: January 2, 2020
    Publication date: June 11, 2020
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Jose F. Rojas, Ka-Man Venus Lai, Andrew J. Murphy, Cagan Gurer
  • Patent number: 10626402
    Abstract: Methods are provided herein for assembling at least two nucleic acids using a sequence specific nuclease agent (e.g., a gRNA-Cas complex) to create end sequences having complementarity and subsequently assembling the overlapping complementary sequences. The nuclease agent (e.g., a gRNA-Cas complex) can create double strand breaks in dsDNA in order to create overlapping end sequences or can create nicks on each strand to produce complementary overhanging end sequences. Assembly using the method described herein can assemble any nucleic acids having overlapping sequences or can use a joiner oligo to assemble sequences without complementary ends.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: April 21, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Chris Schoenherr, John McWhirter, Corey Momont, Caitlin L. Goshert, Lynn MacDonald, Gregg S. Warshaw, Jose F. Rojas, Ka-Man Venus Lai, David M. Valenzuela, Andrew J. Murphy
  • Publication number: 20200107527
    Abstract: Provided are non-human animals comprising a mutation in the Fbn1 gene to model neonatal progeroid syndrome with congenital lipodystrophy (NPSCL). Also provided are methods of making such non-human animal models. The non-human animal models can be used for screening compounds for activity in inhibiting or reducing NPSCL or ameliorating NPSCL-like symptoms or screening compounds for activity potentially harmful in promoting or exacerbating NPSCL as well as to provide insights in to the mechanism of NPSCL and potentially new therapeutic and diagnostic targets.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 9, 2020
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Charleen Hunt, Jason Mastaitis, Guochun Gong, Ka-Man Venus Lai, Jesper Gromada, Aris N. Economides
  • Publication number: 20200053992
    Abstract: Non-human animals, and methods and compositions for making and using the same, are provided, wherein the non-human animals comprise a humanization of a Programmed cell death 1 (Pdcd1) gene. The non-human animals may be described, in some embodiments, as having a genetic modification to an endogenous Pdcd1 gene so that the non-human animals express a PD-1 polypeptide that includes a human portion and an endogenous portion (e.g., a non-human portion).
    Type: Application
    Filed: November 4, 2019
    Publication date: February 20, 2020
    Applicant: REGENERON PHARMACEUTICALS, INC.
    Inventors: Elena Burova, Alexander O. Mujica, Ka-Man Venus Lai, Andrew J. Murphy
  • Patent number: 10561125
    Abstract: Genetically modified non-human animals comprising a humanized interleukin-15 (IL-15) gene. Cells, embryos, and non-human animals comprising a human IL-15 gene. Rodents that express humanized or human IL-15 protein.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: February 18, 2020
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: Jose F. Rojas, Ka-Man Venus Lai, Andrew J. Murphy, Cagan Gurer
  • Patent number: 10548302
    Abstract: Provided are non-human animals comprising a mutation in the Fbn1 gene to model neonatal progeroid syndrome with congenital lipodystrophy (NPSCL). Also provided are methods of making such non-human animal models. The non-human animal models can be used for screening compounds for activity in inhibiting or reducing NPSCL or ameliorating NPSCL-like symptoms or screening compounds for activity potentially harmful in promoting or exacerbating NPSCL as well as to provide insights in to the mechanism of NPSCL and potentially new therapeutic and diagnostic targets.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: February 4, 2020
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Charleen Hunt, Jason Mastaitis, Guochun Gong, Ka-Man Venus Lai, Jesper Gromada, Aris N. Economides
  • Publication number: 20200015462
    Abstract: This disclosure relates to genetically modified rodent animals and rodent models of human diseases. More specifically, this disclosure relates to genetically modified rodents whose genome comprises a humanized Il1rl2 gene (coding for the IL1rl2 subunit of the IL-36R protein) and human IL-36?, ? and ? ligand genes. The genetically modified rodents disclosed herein display enhanced skin and intestinal inflammation as a preclinical model of psoriasis and IBD, respectively, and serve as a rodent model of human DITRA disease.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 16, 2020
    Inventors: Andrew J. Murphy, Alexander O. Mujica, Ka-Man Venus Lai, Sokol Haxhinasto, Zaruhi Hovhannisyan