Patents by Inventor Kadek W. Hemawan

Kadek W. Hemawan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230403815
    Abstract: A thermoelectric chiller for cooling an electronic device comprising a chassis and a heatsink, the heatsink having a flat side and an opposing side equipped with cooling fins, the chassis and heatsink adapted for cooperative engagement to create an air-sealed chamber with the heatsink cooling fins inside the chamber; a cold air inlet on an inlet side of the chamber, the cold air inlet equipped with one or more fans adapted to force ambient air into the chamber; a hot air exhaust on an exhaust side of the chamber, the hot air exhaust providing an outlet for air to leave the chamber; one or more Peltier effect elements, each having a hot side and a cold side, the one or more Peltier effect elements disposed so that their hot side is in thermal contact with the flat side of the heat sink; a cold plate disposed over the one or more Peltier effect elements and in thermal contact with the cold side of the one or more Peltier effect elements; a controller to control the operation of the one or more fans and the one
    Type: Application
    Filed: June 12, 2023
    Publication date: December 14, 2023
    Inventors: Benjamin K. Sharfi, Saul Gonzalez, Kadek W. Hemawan
  • Publication number: 20230402207
    Abstract: An interconnection cable adapted to connect two or more electronic devices comprising one or more end connectors; at least one of the one or more connectors comprising one or more data plugs, each complying with the USB or the Thunderbolt specification, and one or more power pins that are separate from the data plug; a cable assembly attached to at least one of the one or more connectors; the cable assembly comprising one or more fiber optic cores, and one or more stranded coper wires; wherein at least one of the one or more fiber optic cores is communicatively connected to at least one of the one or more data plugs; and wherein at least one of the one or more stranded copper wires is electrically connected to at least one of the one or more power pins.
    Type: Application
    Filed: June 12, 2023
    Publication date: December 14, 2023
    Inventors: Benjamin K. Sharfi, Cory Steen, Saul Gonzalez, Kadek W. Hemawan
  • Publication number: 20220157691
    Abstract: Disclosed are novel diamond-based devices, methods, and materials for use in thermal interface cooling, including a freestanding diamond wafer heat spreader, liquefied diamond thermal interface materials coolant and encapsulated nanocrystalline diamond metal heat spreaders.
    Type: Application
    Filed: November 17, 2021
    Publication date: May 19, 2022
    Inventors: Benjamin K. Sharfi, Kadek W. Hemawan, Saul Gonzalez
  • Patent number: 9139909
    Abstract: New and improved microwave plasma assisted reactors, for example chemical vapor deposition (MPCVD) reactors, are disclosed. The disclosed microwave plasma assisted reactors operate at pressures ranging from about 10 Torr to about 760 Torr. The disclosed microwave plasma assisted reactors include a movable lower sliding short and/or a reduced diameter conductive stage in a coaxial cavity of a plasma chamber. For a particular application, the lower sliding short position and/or the conductive stage diameter can be variably selected such that, relative to conventional reactors, the reactors can be tuned to operate over larger substrate areas, operate at higher pressures, and discharge absorbed power densities with increased diamond synthesis rates (carats per hour) and increased deposition uniformity.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: September 22, 2015
    Assignees: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY, Fraunhofer USA
    Inventors: Jes Asmussen, Timothy Grotjohn, Donnie K. Reinhard, Thomas Schuelke, M. Kagan Yaran, Kadek W. Hemawan, Michael Becker, David King, Yajun Gu, Jing Lu
  • Patent number: 8668962
    Abstract: New and improved microwave plasma assisted reactors, for example chemical vapor deposition (MPCVD) reactors, are disclosed. The disclosed microwave plasma assisted reactors operate at pressures ranging from about 10 Torr to about 760 Torr. The disclosed microwave plasma assisted reactors include a movable lower sliding short and/or a reduced diameter conductive stage in a coaxial cavity of a plasma chamber. For a particular application, the lower sliding short position and/or the conductive stage diameter can be variably selected such that, relative to conventional reactors, the reactors can be tuned to operate over larger substrate areas, operate at higher pressures, and discharge absorbed power densities with increased diamond synthesis rates (carats per hour) and increased deposition uniformity.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: March 11, 2014
    Assignees: Board of Trustees of Michigan State University, Fraunhofer USA
    Inventors: Jes Asmussen, Timothy Grotjohn, Donnie K. Reinhard, Thomas Schuelke, M. Kagan Yaran, Kadek W. Hemawan, Michael Becker, David King, Yajun Gu, Jing Lu
  • Patent number: 8316797
    Abstract: New and improved microwave plasma assisted reactors, for example chemical vapor deposition (MPCVD) reactors, are disclosed. The disclosed microwave plasma assisted reactors operate at pressures ranging from about 10 Torr to about 760 Torr. The disclosed microwave plasma assisted reactors include a movable lower sliding short and/or a reduced diameter conductive stage in a coaxial cavity of a plasma chamber. For a particular application, the lower sliding short position and/or the conductive stage diameter can be variably selected such that, relative to conventional reactors, the reactors can be tuned to operate over larger substrate areas, operate at higher pressures, and discharge absorbed power densities with increased diamond synthesis rates (carats per hour) and increased deposition uniformity.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: November 27, 2012
    Assignee: Board of Trustees of Michigan State University Fraunhofer USA
    Inventors: Jes Asmussen, Timothy Grotjohn, Donnie K. Reinhard, Thomas Schuelke, M. Kagan Yaran, Kadek W. Hemawan, Michael Becker, David King, Yajun Gu, Jing Lu
  • Publication number: 20100034984
    Abstract: New and improved microwave plasma assisted reactors, for example chemical vapor deposition (MPCVD) reactors, are disclosed. The disclosed microwave plasma assisted reactors operate at pressures ranging from about 10 Torr to about 760 Torr. The disclosed microwave plasma assisted reactors include a movable lower sliding short and/or a reduced diameter conductive stage in a coaxial cavity of a plasma chamber. For a particular application, the lower sliding short position and/or the conductive stage diameter can be variably selected such that, relative to conventional reactors, the reactors can be tuned to operate over larger substrate areas, operate at higher pressures, and discharge absorbed power densities with increased diamond synthesis rates (carats per hour) and increased deposition uniformity.
    Type: Application
    Filed: June 16, 2009
    Publication date: February 11, 2010
    Applicants: Board of Trustees of Michigan State University, Fraunhofer USA
    Inventors: Jes Asmussen, Timothy Grotjohn, Donnie K. Reinhard, Thomas Schuelke, M. Kagan Yaran, Kadek W. Hemawan, Michael Becker, David King, Yajun Gu, Jing Lu
  • Patent number: 7442271
    Abstract: A miniature microwave plasma torch apparatus (10) is described. The microwave plasma torch apparatus (10) is used for a variety of applications where rapid heating of a small amount of material is needed. The miniature microwave plasma torch apparatus (10) operates near or at atmospheric pressure for use in materials processing. The apparatus (10) provides a wide range of flow rates so that discharge properties vary from diffusional flow of radicals for gentle surface processing to high velocity, approaching supersonic, torch discharges for cutting and welding applications. The miniature microwave plasma torch apparatus (10) also has a very small materials processing spot size.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: October 28, 2008
    Assignee: Board of Trustees of Michigan State University
    Inventors: Jes Asmussen, Timothy Grotjohn, Shengxi Zuo, Kadek W. Hemawan