Patents by Inventor Kai-Sheng Lin

Kai-Sheng Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10788690
    Abstract: This present disclosure is generally directed to an optical isolator array with a magnetic base that allows for mounting and alignment of N number of optical isolators modules within an optical subassembly module. In an embodiment, the magnetic base provides at least one mounting surface for coupling to N number of optical isolators, with N being equal to an optical channel count for the optical subassembly (e.g., 4-channels, 8-channels, and so on). The magnetic base includes an overall width that allows for a desired number of optical isolators to get mounted thereon. Each optical isolator can be uniformly disposed along the same axis on the magnetic base and at a distance D from adjacent optical isolators. An adhesive such as ultraviolet-curing (UV-curing) optical adhesives may be used to secure each optical isolator at a predefined position and increase overall structural integrity.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: September 29, 2020
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Kevin Liu, Ziliang Cai
  • Publication number: 20200285007
    Abstract: The present disclosure is generally directed to a multi-channel TOSA arrangement with a housing that utilizes a feedthrough device with at least one integrated mounting surface to reduce the overall dimensions of the housing. The housing includes a plurality of sidewalls that define a hermetically-sealed cavity therebetween. The feedthrough device includes a first end disposed in the hermetically-sealed cavity of the housing and a second end extending from the cavity away from the housing. The feedthrough device provides the at least one integrated mounting surface proximate the first end within the hermetically-sealed cavity. At least a first laser diode driver (LDD) chip mounts to the at least one integrated mounting surface of the feedthrough device. A plurality of laser arrangements are also disposed in the hermetically-sealed cavity proximate the first LDD chip and mount to, for instance, a LD submount supported by a thermoelectric cooler.
    Type: Application
    Filed: October 25, 2019
    Publication date: September 10, 2020
    Inventors: Kevin LIU, Kai-Sheng LIN, Ziliang CAI
  • Publication number: 20200285008
    Abstract: The present disclosure is generally directed to a multi-channel TOSA arrangement with a housing that utilizes a feedthrough device with at least one integrated mounting surface to reduce the overall dimensions of the housing. The housing includes a plurality of sidewalls that define a hermetically-sealed cavity therebetween. The feedthrough device includes a first end disposed in the hermetically-sealed cavity of the housing and a second end extending from the cavity away from the housing. The feedthrough device provides the at least one integrated mounting surface proximate the first end within the hermetically-sealed cavity. At least a first laser diode driver (LDD) chip mounts to the at least one integrated mounting surface of the feedthrough device. A plurality of laser arrangements are also disposed in the hermetically-sealed cavity proximate the first LDD chip and mount to, for instance, a LD submount supported by a thermoelectric cooler.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Inventors: Kai-Sheng LIN, Kevin LIU, Hao-Chiang CHENG
  • Publication number: 20200251879
    Abstract: The present disclosure is generally directed to a multi-channel TOSA with vertically-mounted MPDs to reduce TOSA housing dimensions and improve RF driving signal quality. In more detail, a TOSA housing consistent with the present disclosure includes at least one vertical MPD mounting surface that extends substantially transverse relative to a LD mounting surface, with the result being that a MPD coupled to the vertical MPD mounting surface gets positioned above an associated LD coupled to the LD mounting surface. The vertically-mounted MPD thus makes regions adjacent an LD that would otherwise be utilized to mount an MPD available for patterning of conductive RF traces to provide an RF driving signal to the LD. The conductive RF traces may therefore extend below the vertically-mounted MPD to a location that is proximate the LD to allow for relatively short wire bonds therebetween.
    Type: Application
    Filed: February 6, 2019
    Publication date: August 6, 2020
    Inventors: Kai-Sheng LIN, Hsiu-Che WANG, Kevin LIU
  • Publication number: 20200241334
    Abstract: This present disclosure is generally directed to an optical isolator array with a magnetic base that allows for mounting and alignment of N number of optical isolators modules within an optical subassembly module. In an embodiment, the magnetic base provides at least one mounting surface for coupling to N number of optical isolators, with N being equal to an optical channel count for the optical subassembly (e.g., 4-channels, 8-channels, and so on). The magnetic base includes an overall width that allows for a desired number of optical isolators to get mounted thereon. Each optical isolator can be uniformly disposed along the same axis on the magnetic base and at a distance D from adjacent optical isolators. An adhesive such as ultraviolet-curing (UV-curing) optical adhesives may be used to secure each optical isolator at a predefined position and increase overall structural integrity.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 30, 2020
    Inventors: Kai-Sheng LIN, Kevin Liu, Ziliang Cai
  • Patent number: 10714890
    Abstract: The present disclosure is generally directed to a multi-channel TOSA with vertically-mounted MPDs to reduce TOSA housing dimensions and improve RF driving signal quality. In more detail, a TOSA housing consistent with the present disclosure includes at least one vertical MPD mounting surface that extends substantially transverse relative to a LD mounting surface, with the result being that a MPD coupled to the vertical MPD mounting surface gets positioned above an associated LD coupled to the LD mounting surface. The vertically-mounted MPD thus makes regions adjacent an LD that would otherwise be utilized to mount an MPD available for patterning of conductive RF traces to provide an RF driving signal to the LD. The conductive RF traces may therefore extend below the vertically-mounted MPD to a location that is proximate the LD to allow for relatively short wire bonds therebetween.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: July 14, 2020
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Hsiu-Che Wang, Kevin Liu
  • Publication number: 20200218018
    Abstract: The present disclosure is generally directed to an optical transceiver module that includes a mounting section for aligning and coupling to associated TOSA modules. In particular, an embodiment of the present disclosure includes TOSA and ROSA components disposed on a printed circuit board assembly (PCBA). The PCBA includes a plurality of grooves at a optical coupling end to provide a TOSA mounting section. Each of the grooves provides at least one mating surface to receive and couple to an associated TOSA module. Opposite the optical coupling end, the PCBA includes an electric coupling section for coupling to, for example, a transmit (RX) circuit that provides one or more electrical signals to drive TOSA modules coupled to the TOSA mounting section.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Inventors: Kai-Sheng LIN, Yi WANG, Ziliang CAI
  • Patent number: 10698168
    Abstract: The present disclosure is generally directed to an optical transceiver module that includes a mounting section for aligning and coupling to associated TOSA modules. In particular, an embodiment of the present disclosure includes TOSA and ROSA components disposed on a printed circuit board assembly (PCBA). The PCBA includes a plurality of grooves at a optical coupling end to provide a TOSA mounting section. Each of the grooves provides at least one mating surface to receive and couple to an associated TOSA module. Opposite the optical coupling end, the PCBA includes an electric coupling section for coupling to, for example, a transmit (RX) circuit that provides one or more electrical signals to drive TOSA modules coupled to the TOSA mounting section.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: June 30, 2020
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Yi Wang, Ziliang Cai
  • Patent number: 10634844
    Abstract: A multi-channel transceiver, consistent with the present disclosure, includes a multiplexer/demultiplexer (MUX/DEMUX) device configured to be shared by, and support operations of, a multi-channel transmitter optical subassembly (TOSA) and multi-channel receiver optical subassembly (ROSA) within a single transceiver housing. The shared MUX/DEMUX device may be referred to herein as simply a shared AWG for ease of description and not for purposes of limitation. The shared AWG receives optical signals from a plurality of TOSA modules at different channel wavelengths via a plurality of mux input ports, and then combines the optical signals into a multiplexed optical signal, with the multiplexed optical signal being output via a mux output port. In addition, the shared AWG receives an optical signal having different channel wavelengths at a demux input port and separates channel wavelengths to be output via a plurality of demux output ports.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: April 28, 2020
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Qin Li, Chong Wang
  • Patent number: 10608408
    Abstract: The present disclosure is generally directed to a laser subassembly for use in a TOSA module that includes an integrated impedance matching network to enable a plurality of selectable resistance configurations to ensure the driving circuit and laser emitter of the TOSA module have matching, or substantially matching, impedances. The laser subassembly includes a substrate with a driving circuit disposed thereon. The driving circuit includes signal conductors for electrically coupling to an external transmit connecting circuit, a conductive laser mounting section, and an impedance matching network. The impedance matching network includes a plurality of resistors, with one or more of the resistors being selectively electrically coupled to the conductive laser mounting section to introduce a selected amount of impedance to minimize or otherwise reduce reflection.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: March 31, 2020
    Assignee: Applied Optoelectronics, Inc
    Inventors: Kai-Sheng Lin, Ziliang Cai, Chong Wang
  • Publication number: 20200073052
    Abstract: In general, a TOSA consistent with the present disclosure includes a light driving circuit coupled to a hermetically-sealed light engine. The hermetically-sealed light engine includes a housing defined by a plurality of sidewalls. The housing defines a cavity that is hermetically-sealed to prevent introduction of contaminants that would otherwise reduce optical power. The hermetically-sealed light engine optically couples to an external arrayed waveguide grating (AWG), or other multiplexing device, by way of an optical receptacle. The optical receptacle can include a waveguide implemented external to the hermetically-sealed cavity and can include, for instance, an optical isolator, fiber stub, and fiber ferrule section. Thus, the external AWG and associated external optical coupling components advantageously allow for the hermetically-sealed light engine to have a cavity with dimensions relatively smaller than other approaches that dispose an AWG and associated components within a hermetically-sealed cavity.
    Type: Application
    Filed: August 29, 2018
    Publication date: March 5, 2020
    Inventors: Kai-Sheng LIN, Kevin LIU, I-Lung HO
  • Publication number: 20200041736
    Abstract: The present disclosure is generally directed to an on-board ROSA arrangement where a fiber receptacle element, optical components such as optical de-multiplexer (e.g., an arrayed waveguide grating (AWG)), turning mirror, photodiodes and light receiving chip are mounted to a common substrate. The fiber receptacle element includes a body that defines a slot to at least partially receive an end of the substrate and mount thereto. The body of the fiber receptacle further includes an aperture that extends through the body to receive an optical fiber and/or associated connector and align the same with ROSA components mounted on a surface of the substrate. The fiber receptacle body may be solid, e.g., formed from a single, monolithic piece of material, and may be manufactured from metal, plastic or other suitably rigid material.
    Type: Application
    Filed: August 2, 2018
    Publication date: February 6, 2020
    Inventors: Kevin LIU, Kai-Sheng LIN, Hao-Chiang CHENG
  • Patent number: 10514515
    Abstract: An optical transceiver module is disclosed having a housing that includes at least a first housing portion and a second housing portion, each of the first and second housing portions including a base portion having at least one sidewall extending therefrom that defines a compartment. The first housing portion is configured to couple to the second housing portion to form a cavity therebetween. A transmitter optical subassembly (TOSA) arrangement coupled to the base portion of the first housing portion and is electrically coupled to a first flexible printed circuit (FPC). A receiver optical subassembly (ROSA) arrangement is coupled to the base portion of the second housing portion and is electrically coupled to a second FPC. A first shield coupled to at least one of the first housing portion or the second housing portion to reduce electromagnetic interference between the TOSA arrangement and the ROSA arrangement.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: December 24, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Hsiu-Che Wang, Ziliang Cai
  • Patent number: 10514510
    Abstract: The present disclosure is directed to a keyed optical component assembly that ensures that the same has a proper orientation when press-fit into or otherwise coupled to a complimentary opening of an optical subassembly housing. In an embodiment, the keyed optical component assembly includes a base portion defined by a first end and a second end disposed opposite the first end along a longitudinal axis. A first arcuate region extends from the first end towards the second end and transitions into a tapered region. A second arcuate region extends from the second end towards the first end and also transitions into the tapered region. Therefore, the tapered region extends between the first arcuate region and the second arcuate region, and generally tapers/narrows from the second arcuate region to the first arcuate region. The resulting shape of the base portion may generally be described as an asymmetric tear-drop shape.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: December 24, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Justin Lii, Hao-Hsiang Liao
  • Patent number: 10451825
    Abstract: The present disclosure is generally directed to an optical transceiver module with a locking arrangement that allows the optical transceiver module to be releasably coupled into an associated receptacle of an optical transceiver cage. The locking arrangement includes a handle member with teeth configured to engage notches of an actuating member to allow rotational movement of the handle to be translated into linear movement by the actuating member. The linear movement of the actuating member may be independent of the housing of the optical transceiver module, and as the handle is transitioned from a locked position to a release position such movement of the actuating member can urge release of the locking members of the optical transceiver cage by way of the tab portions of the actuating member. A user may then supply a force, e.g., a pulling force, to remove the unlocked subassembly module from the receptacle.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: October 22, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Ziliang Cai, Hao-Chiang Cheng
  • Patent number: 10295763
    Abstract: Techniques for flexible coupling between an optical coupling receptacle/port of an optical transceiver housing and optical components within the same are disposed. In an embodiment, an optical transceiver housing includes an intermediate fiber with a first end optically coupled to an optical coupling port and a second end optically coupled to a multiplexer/de-multiplexer device, e.g., an arrayed waveguide grating (AWG) device, PLC splitter, and so on. The intermediate fiber may be routed in the transceiver housing in a manner that and the radius of the bends may be optimized to reduce fiber bending losses. The techniques herein are equally applicable to both ROSA and TOSA modules and may be utilized to achieve flexible coupling for multi-channel transceiver devices.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: May 21, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Luohan Peng, Kai-Sheng Lin, Elsie Marentes
  • Patent number: 10295765
    Abstract: A photodiode package is disclosed that includes a TO-Can style body with an exposed sensor cavity that eliminates the necessity of an encapsulant dispensing process. The TO-Can body of the photodiode package includes an integrated coupling member to allow for coupling to a ROSA housing without an intermediate member. The photodiode package includes a base portion with a cylindrical wall portion that extends therefrom to form an optical coupling cavity. A surface of the base portion provides at least one mounting surface within the optical coupling cavity for coupling to a photodiode chip. The cylindrical wall may function as an integrated coupling member and may be used to directly couple the photodiode package, e.g., without an intermediate cap/ring, into a socket of a ROSA housing. The base portion and cylindrical wall may be formed from a single piece of material, or from multiple pieces depending on a desired configuration.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: May 21, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, YongXuan Liang, Justin Lii
  • Patent number: 10247892
    Abstract: A transceiver module having a partitioned housing, e.g., a bifurcated or multi-segment housing, is disclosed that allows coupling and alignment of a TOSA arrangement and ROSA arrangement in separate respective portions in order to minimize or otherwise reduce component damage and rework iterations during manufacturing and repair. Technicians may thus perform at least partial assembly and testing of each optical subassembly arrangement in parallel and in relative isolation without necessarily interrupting and/or waiting on completion of the other. In a general sense, each separate portion of the partitioned housing provides a dedicated workspace of about equal dimension for coupling of subassembly components. Each separate portion may lie flat on a tabletop, for instance, which may further simplify manufacturing processes and provide a wide-range of acceptance angles for performing soldering, welding, insertion and coupling of components, visual inspection, fiber routing, and so on.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: April 2, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Hsiu-Che Wang, I-Lung Ho
  • Patent number: 10230470
    Abstract: In accordance with an embodiment, a multi-layered flexible printed circuit (FPC) is disclosed that includes two or more insulating layers to route conductive traces carrying radio frequency (RF) signals, e.g., data signals, and conductive traces carrying direct current (DC) signals, e.g., power signals and low-frequency control signals, while sufficiently isolating the RF signals from electrical interference by the DC transmission lines. This advantageously eliminates having two or more separate FPCs to electrically couple each optical subassembly, e.g., receiver optical subassemblies (ROSAs) and transmitter optical subassemblies (TOSAs), to associated circuitry in a transceiver housing, which saves space and reduces manufacturing complexity, for example.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: March 12, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Yi Wang, Kevin Liu
  • Patent number: 10191233
    Abstract: A mirror device for use in an optical subassembly is disclosed that includes at least one surface with a visible indicator to allow a technician to differentiate a highly-reflective surface from relatively less reflective (e.g., un-coated) surfaces. The mirror device may be formed using known approaches, such as through the deposition of a metallic material on to a surface of the mirror device followed by one or more optional coating layers. Before, or after, forming the highly-reflective surface, a visual indicator may be introduced on to a surface of the mirror device that is opposite the highly-reflective surface. The visual indicator may comprise, for example, random scratches/scoring etched from a wire brush or tool, paint, epoxy, ink, or any other indicator that allows a technician to visually differentiate the portion of the mirror device having the visual indicator from the highly-reflective portion.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: January 29, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, I-Lung Ho, Hsiu-Che Wang