Patents by Inventor Kai-Shun Kang

Kai-Shun Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11393955
    Abstract: A light emitting diode (LED) including an epitaxial stacked layer, first and second reflective layers which are disposed at two sides of the epitaxial stacked layer, a current conducting layer and first and second electrodes and a manufacturing thereof are provided. The epitaxial stacked layer includes a first-type and a second-type semiconductor layers and an active layer. A main light emitting surface with a light transmittance >0% and ?10% is formed on one of the two reflective layers. The current conducting layer contacts the second-type semiconductor layer. The first electrode is electrically connected to the first-type semiconductor layer. The second electrode is electrically connected to the second-type semiconductor layer via the current conducting layer. A contact scope of the current conducting layer and the second-type semiconductor layer is served as a light-emitting scope overlapping the two layers, but not overlapping the two electrodes.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: July 19, 2022
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Kai-Shun Kang, Tung-Lin Chuang, Yu-Chen Kuo, Yan-Ting Lan, Chih-Ming Shen, Jing-En Huang
  • Publication number: 20200220050
    Abstract: A light emitting diode (LED) including an epitaxial stacked layer, first and second reflective layers which are disposed at two sides of the epitaxial stacked layer, a current conducting layer and first and second electrodes and a manufacturing thereof are provided. The epitaxial stacked layer includes a first-type and a second-type semiconductor layers and an active layer. A main light emitting surface with a light transmittance >0% and ?10% is formed on one of the two reflective layers. The current conducting layer contacts the second-type semiconductor layer. The first electrode is electrically connected to the first-type semiconductor layer. The second electrode is electrically connected to the second-type semiconductor layer via the current conducting layer. A contact scope of the current conducting layer and the second-type semiconductor layer is served as a light-emitting scope overlapping the two layers, but not overlapping the two electrodes.
    Type: Application
    Filed: December 6, 2019
    Publication date: July 9, 2020
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Kai-Shun Kang, Tung-Lin Chuang, Yu-Chen Kuo, Yan-Ting Lan, Chih-Ming Shen, Jing-En Huang
  • Publication number: 20190312176
    Abstract: A light-emitting diode including a semiconductor epitaxial layer, a first electrode, and a second electrode is provided. The semiconductor epitaxial layer includes a first-type doped semiconductor layer, a second-type doped semiconductor layer, and a quantum well layer. A recessed portion is formed in the semiconductor epitaxial layer. The recessed portion separates the second-type doped semiconductor layer, the quantum well layer, and a portion of the first-type doped semiconductor layer and defines a first region and a second region on the semiconductor epitaxial layer. The first electrode is located in the first region and electrically connected to at least a portion of the first-type doped semiconductor layer and at least a portion of the second-type doped semiconductor layer. The second electrode is located in the second region and electrically connected to the second-type doped semiconductor layer.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 10, 2019
    Applicant: Genesis Photonics Inc.
    Inventors: Tsung-Syun Huang, Jing-En Huang, Yu-Chen Kuo, Yan-Ting Lan, Kai-Shun Kang, Fei-Lung Lu, Teng-Hsien Lai, Yi-Ru Huang
  • Patent number: 10326047
    Abstract: A light-emitting diode including a semiconductor epitaxial layer, a first electrode, and a second electrode is provided. The semiconductor epitaxial layer includes a first-type doped semiconductor layer, a second-type doped semiconductor layer, and a quantum well layer. A recessed portion is formed in the semiconductor epitaxial layer. The recessed portion separates the second-type doped semiconductor layer, the quantum well layer, and a portion of the first-type doped semiconductor layer and defines a first region and a second region on the semiconductor epitaxial layer. The first electrode is located in the first region and electrically connected to at least a portion of the first-type doped semiconductor layer and at least a portion of the second-type doped semiconductor layer. The second electrode is located in the second region and electrically connected to the second-type doped semiconductor layer.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: June 18, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Tsung-Syun Huang, Jing-En Huang, Yu-Chen Kuo, Yan-Ting Lan, Kai-Shun Kang, Fei-Lung Lu, Teng-Hsien Lai, Yi-Ru Huang
  • Publication number: 20180248078
    Abstract: Provided is a light-emitting diode chip including a semiconductor device layer, a first electrode, a current-blocking layer, a current-spreading layer, and a second electrode. The semiconductor device layer includes a first-type doped semiconductor layer, a second-type doped semiconductor layer, and a light-emitting layer therebetween. The first electrode is electrically connected to the first-type doped semiconductor layer. The current-blocking layer is on the second-type doped semiconductor layer. The current-blocking layer is between the current-spreading layer and the second-type doped semiconductor layer. The second electrode is on the current-spreading layer and electrically connected to the second-type doped semiconductor layer. The current-blocking layer has a first surface facing the semiconductor device layer, a second surface back on to the semiconductor device layer, and a first inclined surface.
    Type: Application
    Filed: April 30, 2018
    Publication date: August 30, 2018
    Inventors: Yu-Chen Kuo, Teng-Hsien Lai, Kai-Shun Kang, Yan-Ting Lan, Jing-En Huang, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Patent number: 10050173
    Abstract: A light emitting device includes a semiconductor light emitting unit and a light-transmitting substrate. The light-transmitting substrate includes an upper surface having two long sides and two short sides and a side surface, and the semiconductor light emitting unit is disposed on the upper surface. The side surface includes two first surfaces, two second surfaces, and rough micro-structures. Each of the first surfaces is connected to one of the long sides of the upper surface, and each of the second surfaces is connected to one of the short sides of the upper surface. The rough micro-structures are formed on the first surfaces and the second surfaces, a covering rate of the rough micro-structures on each of the first surfaces is greater than or equal to a covering rate of the rough micro-structures on each of the second surfaces. A manufacturing method of the light emitting device is also provided.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: August 14, 2018
    Assignee: Genesis Photonics Inc.
    Inventors: Jing-En Huang, Kai-Shun Kang, Yu-Chen Kuo, Fei-Lung Lu, Teng-Hsien Lai
  • Publication number: 20170062653
    Abstract: A light-emitting diode including a semiconductor epitaxial layer, a first electrode, and a second electrode is provided. The semiconductor epitaxial layer includes a first-type doped semiconductor layer, a second-type doped semiconductor layer, and a quantum well layer. A recessed portion is formed in the semiconductor epitaxial layer. The recessed portion separates the second-type doped semiconductor layer, the quantum well layer, and a portion of the first-type doped semiconductor layer and defines a first region and a second region on the semiconductor epitaxial layer. The first electrode is located in the first region and electrically connected to at least a portion of the first-type doped semiconductor layer and at least a portion of the second-type doped semiconductor layer. The second electrode is located in the second region and electrically connected to the second-type doped semiconductor layer.
    Type: Application
    Filed: September 2, 2016
    Publication date: March 2, 2017
    Applicant: Genesis Photonics Inc.
    Inventors: Tsung-Syun Huang, Jing-En Huang, Yu-Chen Kuo, Yan-Ting Lan, Kai-Shun Kang, Fei-Lung Lu, Teng-Hsien Lai, Yi-Ru Huang
  • Publication number: 20160315238
    Abstract: Provided is a light-emitting diode chip including a semiconductor device layer, a first electrode, a current-blocking layer, a current-spreading layer, and a second electrode. The semiconductor device layer includes a first-type doped semiconductor layer, a second-type doped semiconductor layer, and a light-emitting layer therebetween. The first electrode is electrically connected to the first-type doped semiconductor layer. The current-blocking layer is on the second-type doped semiconductor layer. The current-blocking layer is between the current-spreading layer and the second-type doped semiconductor layer. The second electrode is on the current-spreading layer and electrically connected to the second-type doped semiconductor layer. The current-blocking layer has a first surface facing the semiconductor device layer, a second surface back on to the semiconductor device layer, and a first inclined surface.
    Type: Application
    Filed: April 22, 2016
    Publication date: October 27, 2016
    Inventors: Yu-Chen Kuo, Teng-Hsien Lai, Kai-Shun Kang, Yan-Ting Lan, Jing-En Huang, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Publication number: 20160247972
    Abstract: A light-emitting diode chip including a semiconductor device layer, a first electrode, a current-blocking layer, a current-spreading layer, and a second electrode is provided. The semiconductor device layer includes a first-type doped semiconductor layer, a second-type doped semiconductor layer, and a light-emitting layer located between the first-type and second-type doped semiconductor layers. The first electrode is electrically connected to the first-type doped semiconductor layer. The current-blocking layer is disposed on the second-type doped semiconductor layer, and the current-blocking layer includes a main body and an extension portion extended from the main body. The current-spreading layer covers the current-blocking layer.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 25, 2016
    Inventors: Yu-Chen Kuo, Teng-Hsien Lai, Kai-Shun Kang, Yan-Ting Lan, Jing-En Huang
  • Publication number: 20160247985
    Abstract: A light emitting device includes a semiconductor light emitting unit and a light-transmitting substrate. The light-transmitting substrate includes an upper surface having two long sides and two short sides and a side surface, and the semiconductor light emitting unit is disposed on the upper surface. The side surface includes two first surfaces, two second surfaces, and rough micro-structures. Each of the first surfaces is connected to one of the long sides of the upper surface, and each of the second surfaces is connected to one of the short sides of the upper surface. The rough micro-structures are formed on the first surfaces and the second surfaces, a covering rate of the rough micro-structures on each of the first surfaces is greater than or equal to a covering rate of the rough micro-structures on each of the second surfaces. A manufacturing method of the light emitting device is also provided.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 25, 2016
    Inventors: Jing-En Huang, Kai-Shun Kang, Yu-Chen Kuo, Fei-Lung Lu, Teng-Hsien Lai
  • Publication number: 20160240741
    Abstract: A light emitting component includes an epitaxial structure, a first electrode, a conducting layer and a second electrode. The epitaxial structure includes a substrate, a first semiconductor layer, a light emitting layer and a second semiconductor layer. The first electrode is disposed on the first semiconductor layer. The conducting layer is disposed on the second semiconductor layer and includes a first conducting area and a second conducting area, wherein a resistance of the first conducting area is smaller than a resistance of the second conducting area. The second electrode is disposed on the conducting layer and has an extension portion, wherein the extension portion extends toward the first electrode and the first conducting area overlaps at least a part of the extension portion.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 18, 2016
    Inventors: Yu-Chen Kuo, Yan-Ting Lan, Jing-En Huang, Teng-Hsien Lai, Kai-Shun Kang