Patents by Inventor Kaiyuan MEI

Kaiyuan MEI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11873225
    Abstract: The present disclosure provides a modified montmorillonite self-repairing agent and a preparation method and use thereof, and belongs to the technical field of cement repairing materials. Montmorillonite is mixed with water, such that water is fully adsorbed between montmorillonite layers. The structure of montmorillonite is modified by supercritical CO2 treatment at a temperature of 50-60° C. and a pressure of 8-12 MPa, and the self-repairing efficiency of cement is improved by adding the modified montmorillonite into cement. Supercritical CO2 is adsorbed by montmorillonite, such that the montmorillonite is activated and an interlayer distance is increased to improve the repairing efficiency. When a crack is formed in cement, the adsorbed supercritical CO2 in montmorillonite is released into the crack and combined with positive ions to generate carbonate deposition, such that the crack is sealed and the self-repairing activity of the cement is improved.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: January 16, 2024
    Assignee: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences
    Inventors: Liwei Zhang, Kaiyuan Mei, Yan Wang, Manguang Gan, Xiaochun Li
  • Publication number: 20220267162
    Abstract: The present disclosure provides a modified montmorillonite self-repairing agent and a preparation method and use thereof, and belongs to the technical field of cement repairing materials. Montmorillonite is mixed with water, such that water is fully adsorbed between montmorillonite layers. The structure of montmorillonite is modified by supercritical CO2 treatment at a temperature of 50-60° C. and a pressure of 8-12 MPa, and the self-repairing efficiency of cement is improved by adding the modified montmorillonite into cement. Supercritical CO2 is adsorbed by montmorillonite, such that the montmorillonite is activated and an interlayer distance is increased to improve the repairing efficiency. When a crack is formed in cement, the adsorbed supercritical CO2 in montmorillonite is released into the crack and combined with positive ions to generate carbonate deposition, such that the crack is sealed and the self-repairing activity of the cement is improved.
    Type: Application
    Filed: February 18, 2022
    Publication date: August 25, 2022
    Inventors: Liwei Zhang, Kaiyuan Mei, Yan Wang, Manguang Gan, Xiaochun Li
  • Patent number: 11345844
    Abstract: An oil well cement slurry high-temperature suspension stabilizer prepared from oil-based shale drilling cuttings is provided. The high-temperature suspension stabilizer is reasonable in principle, inexpensive and easily available in raw materials, high in product uniformity and good in chemical stability. Meanwhile, waste is changed into wealth. Therefore, the high-temperature suspension stabilizer is environment-friendly and has a broad industrial application prospect.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: May 31, 2022
    Assignees: SOUTHWEST PETROLEUM UNIVERSITY, SOUTHWEST PETROLEUM UNIVERSITY ENVIORMENTAL PROTECTION TECHNOLOGY (CHENGDU) CO., LTD
    Inventors: Xiaowei Cheng, Gaoyin Zhang, Shunxiang Luo, Zuwei Chen, Sheng Huang, Kaiqiang Liu, Chunmei Zhang, Kaiyuan Mei, Jian Liu, Zaoyuan Li, Xiaoyang Guo
  • Patent number: 10975284
    Abstract: A well cementation working solution prepared from red mud, slag and waste drilling fluids. The working solution is prepared from the following components in parts by weight: 100 parts of waste drilling fluids, 50-100 parts of slag, 5-50 parts of red mud, 4-7 parts of a suspension stabilizer, 1-7 parts of an activating aid, 0.5-5 parts of an anti-pollution agent and 0.4-3.5 parts of a diluent. The waste drilling fluids are waste waterborne drilling fluids. The slag is blast furnace slag or vanadium-titanium slag. The suspension stabilizer is sodium bentonite, carboxymethyl cellulose or a mixture of sodium bentonite and carboxymethyl cellulose. The activating aid is sodium metasilicate nonahydrate, sodium carbonate or a mixture of sodium metasilicate nonahydrate and sodium carbonate. The anti-pollution agent is sodium salicylate, potassium citrate or a mixture of sodium salicylate and potassium citrate. The diluent is sodium lignin sulfonate.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: April 13, 2021
    Assignees: SouthWest Petroleum University, China Academy of Building Research, CNPC Engineering Technology R&D Company Limited
    Inventors: Xiaowei Cheng, Dan Long, Kaiyuan Mei, Kaiqiang Liu, Gaoyin Zhang, Dan Qin, Xianshu Gao, Jianzhou Jin, Zhaijun Wen, Yongjin Yu, Chunmei Zhang, Zaoyuan Li, Xingguo Zhang, Xiaoyang Guo
  • Patent number: 10876945
    Abstract: A method for evaluating the breakage strength of first and second cemented surfaces of well cementation under a dynamic load, includes: producing a rock-set cement-casing composite structure sample; clamping the sample between an incident rod and an output rod of a Hopkinson rod, hitting the incident rod with a conical punch to generate incident waves, enabling the incident waves to pass through the sample to generate reflected waves and projected waves, recording dynamic strain signals of incident waves, reflected waves and projected waves, and converting the dynamic strain signals into electrical signals and transmitting the electrical signals to a computer; recording the process and the corresponding time point from breakage starting to a complete breakage of the first and second cemented surfaces by a photographic instrument; obtaining a strain rate time travel curve and a stress-strain curve, and obtaining the corresponding breakage strength by analyzing the curve peak points.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: December 29, 2020
    Assignees: SOUTHWEST PETROLEUM UNIVERSITY, CHINA ACADEMY OF BUILDING RESEARCH, CNPC ENGINEERING TECHNOLOGY R&D COMPANY LIMITED
    Inventors: Xiaowei Cheng, Dan Qin, Kaiyuan Mei, Kaiqiang Liu, Gaoyin Zhang, Xianshu Gao, Jianzhou Jin, Zhaijun Wen, Yongjin Yu, Chunmei Zhang, Zaoyuan Li, Xingguo Zhang, Xiaoyang Guo
  • Publication number: 20200392393
    Abstract: An oil well cement slurry high-temperature suspension stabilizer prepared from oil-based shale drilling cuttings is provided. The high-temperature suspension stabilizer is reasonable in principle, inexpensive and easily available in raw materials, high in product uniformity and good in chemical stability. Meanwhile, waste is changed into wealth. Therefore, the high-temperature suspension stabilizer is environment-friendly and has a broad industrial application prospect.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 17, 2020
    Inventors: Xiaowei Cheng, Gaoyin Zhang, Shunxiang Luo, Zuwei Chen, Sheng Huang, Kaiqiang Liu, Chunmei Zhang, Kaiyuan Mei, Jian Liu, Zaoyuan Li, Xiaoyang Guo
  • Publication number: 20200071594
    Abstract: A well cementation working solution prepared from red mud, slag and waste drilling fluids. The working solution is prepared from the following components in parts by weight: 100 parts of waste drilling fluids, 50-100 parts of slag, 5-50 parts of red mud, 4-7 parts of a suspension stabilizer, 1-7 parts of an activating aid, 0.5-5 parts of an anti-pollution agent and 0.4-3.5 parts of a diluent. The waste drilling fluids are waste waterborne drilling fluids. The slag is blast furnace slag or vanadium-titanium slag. The suspension stabilizer is sodium bentonite, carboxymethyl cellulose or a mixture of sodium bentonite and carboxymethyl cellulose. The activating aid is sodium metasilicate nonahydrate, sodium carbonate or a mixture of sodium metasilicate nonahydrate and sodium carbonate. The anti-pollution agent is sodium salicylate, potassium citrate or a mixture of sodium salicylate and potassium citrate. The diluent is sodium lignin sulfonate.
    Type: Application
    Filed: July 13, 2018
    Publication date: March 5, 2020
    Applicants: SouthWest Petroleum University, China Academy of Building Research, CNPC Engineering Technology R&D Company Limited
    Inventors: Xiaowei CHENG, Dan LONG, Kaiyuan MEI, Kaiqiang LIU, Gaoyin ZHANG, Dan QIN, Xianshu GAO, Jianzhou JIN, Zhaijun WEN, Yongjin YU, Chunmei ZHANG, Zaoyuan LI, Xingguo ZHANG, Xiaoyang GUO
  • Publication number: 20200011777
    Abstract: A method for evaluating the breakage strength of first and second cemented surfaces of well cementation under a dynamic load, includes: producing a rock-set cement-casing composite structure sample; clamping the sample between an incident rod and an output rod of a Hopkinson rod, hitting the incident rod with a conical punch to generate incident waves, enabling the incident waves to pass through the sample to generate reflected waves and projected waves, recording dynamic strain signals of incident waves, reflected waves and projected waves, and converting the dynamic strain signals into electrical signals and transmitting the electrical signals to a computer; recording the process and the corresponding time point from breakage starting to a complete breakage of the first and second cemented surfaces by a photographic instrument; obtaining a strain rate time travel curve and a stress-strain curve, and obtaining the corresponding breakage strength by analyzing the curve peak points.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 9, 2020
    Applicants: SouthWest Petroleum University, China Academy of Building Research, CNPC Engineering Technology R&D Company Limited
    Inventors: Xiaowei CHENG, Dan QIN, Kaiyuan MEI, Kaiqiang LIU, Gaoyin ZHANG, Xianshu GAO, Jianzhou JIN, Zhaijun WEN, Yongjin YU, Chunmei ZHANG, Zaoyuan LI, Xingguo ZHANG, Xiaoyang GUO