Patents by Inventor Kaizhong Gao

Kaizhong Gao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140050058
    Abstract: An apparatus including a near field transducer positioned adjacent to an air bearing surface, the near field transducer including an electrically conductive nitride; a first magnetic pole; and a heat sink, a diffusion barrier layer, or both positioned between the first magnetic pole and the near field transducer, wherein the heat sink, the diffusion barrier or both include rhodium (Rh) or an alloy thereof; ruthenium (Ru) or an alloy thereof titanium (Ti) or an alloy thereof tantalum (Ta) or an alloy thereof tungsten (W) or an alloy thereof borides; nitrides; transition metal oxides; or palladium (Pd) or an alloy thereof.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 20, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Jie Zou, Kaizhong Gao, William Albert Challener, Mark Henry Ostrowski, Venkateswara Rao Inturi, Tong Zhao, Michael Christopher Kautzky
  • Publication number: 20140050057
    Abstract: An apparatus including a near field transducer positioned adjacent to an air bearing surface, the near field transducer comprising silver (Ag) and at least one other element or compound; a first magnetic pole; and a heat sink positioned between the first magnetic pole and the near field transducer, wherein the heat sink includes: rhodium (Rh) or an alloy thereof; ruthenium (Ru) or an alloy thereof; titanium (Ti) or an alloy thereof; tantalum (Ta) or an alloy thereof; tungsten (W) or an alloy thereof; borides; nitrides; transition metal oxides; or palladium (Pd) or an alloy thereof.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 20, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Jie Zou, Kaizhong Gao, William Albert Challener, Mark Henry Ostrowski, Venkateswara Rao Inturi, Tong Zhao, Michael Christopher Kautzky
  • Patent number: 8649245
    Abstract: A magnetic recording head comprises a write pole having a pole tip adjacent to an air bearing surface, a return pole, an optical near field transducer positioned adjacent the pole tip and an air bearing surface for exposing a portion of a magnetic storage medium to high energy radiation. The energy is directly provided to the near field transducer by a ridge waveguide with tapered coupling elements, by a two dimensional straight or curved waveguide with a beveled end with a metal/dielectric coating for delivering energy to the near field transducer, or by a curved waveguide. The waveguide with tapered coupling elements or with beveled end can be fabricated by means of conventional wafer processing.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: February 11, 2014
    Assignee: Seagate Technology LLC
    Inventors: Arkadi Goulakov, Kaizhong Gao, Xuhui Jin
  • Patent number: 8643979
    Abstract: Magnetic recording techniques, devices, and systems under a tilted perpendicular recording configuration. An implementation of such a system may include a magnetic head having a single pole to produce a magnetic field along a perpendicular direction; and a storage medium having a top surface to be substantially perpendicular to the perpendicular direction and positioned to interact with the magnetic field, wherein the storage medium includes (1) a magnetic medium layer that has anisotropy easy axes tilted at a tilting angle with respect to the perpendicular direction, (2) a growth layer beneath the magnetic medium layer, and (3) a soft under layer beneath the growth layer.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: February 4, 2014
    Assignee: The Regents of the University of California
    Inventor: Kaizhong Gao
  • Patent number: 8628867
    Abstract: A perpendicular magnetic media includes a substrate, a patterned template, a seed layer and a magnetic layer. The patterned template is formed on the substrate and includes a plurality of growth sites that are evenly spaced apart from each other. The seed layer is formed over the patterned template and the exposed areas of the substrate. Magnetic material is sputter deposited onto the seed layer with one grain of the magnetic material nucleated over each of the growth sites. The grain size distribution of the magnetic material is reduced by controlling the locations of the growth sites which optimizes the performance of the perpendicular magnetic media.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: January 14, 2014
    Assignee: Seagate Technology LLC
    Inventors: Shuaigang Xiao, Thomas Young Chang, Yingguo Peng, David Kuo, Kaizhong Gao, Thomas Patrick Nolan, Ganping Ju
  • Publication number: 20140011053
    Abstract: A perpendicular magnetic recording medium adapted for high recording density and high data recording rate comprises a non-magnetic substrate having at least one surface with a layer stack formed thereon, the layer stack including a perpendicular recording layer containing a plurality of columnar-shaped magnetic grains extending perpendicularly to the substrate surface for a length, with a first end distal the surface and a second end proximal the surface, wherein each of the magnetic grains has: (1) a gradient of perpendicular magnetic anisotropy field Hk extending along its length between the first end and second ends; and (2) predetermined local exchange coupling strengths along the length.
    Type: Application
    Filed: August 6, 2013
    Publication date: January 9, 2014
    Applicant: Seagate Technology LLC
    Inventors: Shaoping Li, Kaizhong Gao, Lei Wang, Wenzhong Zhu, Xiaobin Wang
  • Publication number: 20130343167
    Abstract: An apparatus includes a near field transducer positioned adjacent to an air bearing surface, a first magnetic pole, a heat sink positioned between the first magnetic pole and the near field transducer, and a diffusion barrier positioned between the near field transducer and the first magnetic pole. The diffusion barrier can be positioned adjacent to the magnetic pole or the near field transducer.
    Type: Application
    Filed: June 27, 2013
    Publication date: December 26, 2013
    Inventors: Jie Zou, Kaizhong Gao, William Albert Challener, Mark Henry Ostrowski, Venkateswara Rao Inturi, Tong Zhao, Michael Christopher Kautzky
  • Publication number: 20130314816
    Abstract: In order to improve a consistent data track during writing to a storage medium, a plurality of read sensors are affixed to a transducer head. In one implementation, the transducer head includes multiple read sensors placed up-track of the write pole. In another implementation, the transducer head includes at least one read sensor placed up-track of the write pole and at least one read sensor placed down-track of the write pole. Each position of the multiple read sensors relative to the write pole may be unique. One or more read signals of selected read sensors are used to determine the read location and therefore the write pole location relative to the storage medium.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Seagate Technology LLC
    Inventors: Kaizhong Gao, Olle Heinonen, Yonghua Chen
  • Patent number: 8582251
    Abstract: Various embodiments generally relate to a magnetic sensor, and more specifically to a magnetoresistive read head sensor. In one such exemplary embodiment, a magnetic sensor comprises a sensor stack and magnetic bias elements positioned adjacent opposite sides of the sensor stack. At least one of the bias elements has a non-rectangular shape, such as substantially trapezoidal or parallelogram shapes having non-perpendicular corners.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: November 12, 2013
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Lei Wang, Jiaoming Qiu, Yonghua Chen
  • Patent number: 8582250
    Abstract: A trilayer magnetoresistive sensor has at least first and second ferromagnetic layers separated by a nonmagnetic layer. A high coercivity permanent magnet bias element biases the first ferromagnetic layer in a first direction. A high moment permanent magnet bias element biases the second ferromagnetic layer in a second direction substantially orthogonal to the first direction.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: November 12, 2013
    Assignee: Seagate Technology LLC
    Inventors: Jiaoming Qiu, Yonghua Chen, Kaizhong Gao
  • Patent number: 8580580
    Abstract: An apparatus and associated method for a magnetic element capable of detecting changes in magnetic states. Various embodiments of the present invention are generally directed to a free layer that has a first areal extent that is sensitive to a magnetic field and a synthetic antiferromagnetic (SAF) layer adjacent to the free layer and has a second areal extent that is greater than the first areal extent.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: November 12, 2013
    Assignee: Seagate Technology LLC
    Inventors: Victor Boris Sapozhnikov, Eric Walter Singleton, Kaizhong Gao, Dimitar V. Dimitrov
  • Publication number: 20130294207
    Abstract: Apparatus and method for light source power control during the writing of data to a storage medium. In accordance with various embodiments, a data recording head is provided having a magnetic transducer and a light source. The light source is driven at a first power level to irradiate an adjacent storage medium prior to the writing if data to the medium using the magnetic transducer. The first power level is insufficient to alter a magnetization state of the medium. The light source is subsequently transitioned to a higher, second power level to irradiate the storage medium during the writing of data to said medium using the magnetic transducer, the second power level being sufficient to alter said magnetization state of the medium.
    Type: Application
    Filed: July 1, 2013
    Publication date: November 7, 2013
    Inventors: Mehmet Fatih Erden, Edward Charles Gage, Darren W. Karns, Yimin Niu, Kaizhong Gao
  • Publication number: 20130294208
    Abstract: An apparatus includes a waveguide configured to deliver light to a transducer region. The apparatus also includes a plasmonic transducer that has two metal elements configured as side-by-side plates on a substrate-parallel plane with a gap therebetween. The gap is disposed along the substrate-parallel plane and has an input end disposed proximate the transducer region and an output end. The transducer is configured to provide a surface plasmon-enhanced near-field radiation pattern proximate the output end in response to the light received by the waveguide.
    Type: Application
    Filed: May 28, 2013
    Publication date: November 7, 2013
    Inventors: Chubing Peng, Kaizhong Gao, Lien Lee, Amit Itagi, Michael Allen Seigler, Yimin Niu, Sethuraman Jayashankar
  • Publication number: 20130295415
    Abstract: Approaches to reduce switching field distribution in energy assisted magnetic storage devices involve first and second exchange coupled magnetic elements. The first magnetic elements have anisotropy, Hk1, volume, V1 and the second magnetic elements are magnetically exchange coupled to the first magnetic elements and have anisotropy Hk2, and volume V2. The thermal stability of the exchange coupled magnetic elements is greater than about 60 kBT at a storage temperature of about 300 K. The magnetic switching field distribution, SFD, of the exchange coupled magnetic elements is less than about 200% at a predetermined magnetic switching field and a predetermined assisting switching energy.
    Type: Application
    Filed: July 2, 2013
    Publication date: November 7, 2013
    Inventors: Xiaobin Wang, Kaizhong Gao
  • Patent number: 8576673
    Abstract: An apparatus includes a waveguide having a core layer, a near field transducer having an end positioned adjacent to a first surface, a first magnetic pole having an end positioned adjacent to the first surface, and a side lobe blocker adjacent to the first surface and having portions on opposite sides of the first magnetic pole and the near field transducer, wherein the side lobe blocker forms an aperture at an end of the core layer adjacent to the first surface.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: November 5, 2013
    Assignee: Seagate Technology LLC
    Inventors: Mark Henry Ostrowski, Jie Zou, Amit Itagi, Kaizhong Gao
  • Patent number: 8576672
    Abstract: A layer configured for use in a magnetic stack has electrical resistivity greater than about 5×10?8 ?m and thermal conductivity greater than about 1 W/mK. In some arrangements, the magnetic stack includes a substrate with the layer disposed over the substrate, a magnetic recording layer disposed over the layer, and a thermal resist layer disposed between the layer and the magnetic recording layer. In some arrangements, the layer is configured to function as a heat sink and a soft under layer. A system that incorporates the layer can include a magnetic write pole, a near field transducer (NFT) positioned proximate the write pole that radiates energy.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: November 5, 2013
    Assignee: Seagate Technology LLC
    Inventors: Chubing Peng, Edward Charles Gage, Ganping Ju, Jan-Ulrich Thiele, Kaizhong Gao
  • Publication number: 20130279035
    Abstract: A planar collimator has first and second sections each intersecting at a junction between a first axis and a second axis normal to the first axis. Each of the first and second sections have geometries configured to receive light from a source point located on the first axis and collimate the light at respective positive and negative tilting angles relative to the second axis. The first and second sections direct the collimated light to respective first and second sides of a focusing mirror and away from a gap between the first and second sides of the focusing mirror.
    Type: Application
    Filed: March 12, 2013
    Publication date: October 24, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Chubing Peng, Kaizhong Gao, Frank Edgar Stageberg
  • Patent number: 8564910
    Abstract: An apparatus and associated method for a magnetic shield structure for data transduction from a recordable media in a data storage device. Various embodiments of the present invention are generally directed to a data transducer and a magnetic shield structure comprising a write shield magnetic material constructed of exchange decoupled material.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: October 22, 2013
    Assignee: Seagate Technology LLC
    Inventors: Mourad Benakli, Kirill Rivkin, Kaizhong Gao, James Wessel, Ming Sun, Ibro Tabakovic, Mark Thomas Kief
  • Patent number: 8564906
    Abstract: The application discloses a magnetic pole assembly having a pole tip arranged in a magnetic flux path and side shields separated from the pole tip by non-magnetic gap regions. The side shields are shaped to provide a differential shielding effect alongside the pole tip. As described, the sides shields are shaped to provide a non-magnetic gap region having a width that increases in the downtrack direction along a length of the pole tip. The increasing non-magnetic gap region alongside the pole tip provides a smaller non-magnetic gap region separating the pole tip from the side shields at the leading edge than the non-magnetic gap region separating the pole tip from the side shields at the trailing edge of the pole tip.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: October 22, 2013
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Jianhua Xue, Yuming Zhou, Dehua Han, Eric S. Linville
  • Publication number: 20130272104
    Abstract: A writer includes a magnetic write pole having a leading surface and a trailing surface and a near field transducer peg spaced from the leading surface of the write pole to provide energy assisted recording. A magnetic recording system for writing to and reading from a continuous magnetic medium includes a write element having a write element tip having a leading edge and a trailing edge, and wherein at least one surface of the write element that extends in a cross-track direction on the continuous magnetic medium has no line of symmetry.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 17, 2013
    Inventors: Kaizhong Gao, Michael Mallary, Ching He