Patents by Inventor Kakuya UEDA

Kakuya UEDA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978897
    Abstract: According to one embodiment, an active material is provided. The active material includes an Nb2TiO7 phase and at least one Nb-rich phase selected from the group consisting of an Nb10Ti2O29 phase, an Nb14TiO37 phase, and an Nb24TiO64 phase. The active material includes potassium and phosphorus, and a total concentration of potassium and phosphorus in the active material is in the range of 0.01% by mass to 5.00% by mass. An average crystallite diameter is in the range of 80 nm to 150 nm. In a particle size distribution chart obtained by a laser diffraction scattering method, D10 is 0.3 ?m or greater, and D90 is 10 ?m or less. The active material satisfies a peak intensity ratio represented by the following Formula (1). 0<IB/IA?0.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: May 7, 2024
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasuhiro Harada, Yorikazu Yoshida, Kakuya Ueda, Norio Takami
  • Publication number: 20240105917
    Abstract: According to one embodiment, provided is an active material including a niobium titanium-containing oxide phase and a carbon coating layer. The niobium titanium-containing oxide phase contains a niobium titanium-containing oxide having a monoclinic structure and Na, and a Na content therein is 0 ppm or more and 100 ppm or less. The carbon coating layer coats at least a part of the niobium titanium-containing oxide phase, and contains 0.001% or more of carboxyl group.
    Type: Application
    Filed: February 27, 2023
    Publication date: March 28, 2024
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasuhiro HARADA, Taro FUKAYA, Yasunobu YAMASHITA, Kakuya UEDA, Yoshiaki MURATA, Norio TAKAMI
  • Publication number: 20240097274
    Abstract: In general, according to one embodiment, a nonaqueous electrolyte battery is provided. The nonaqueous electrolyte battery includes an electrode group, including a positive electrode, a negative electrode, and a separator. The separator includes at least one metal-element containing portion containing a metal element. The at least one metal-element containing portion is provided on a surface of the separator in contact with the negative electrode. The at least one metal-element containing portion contains at least one selected from a group consisting of a metal, a metallic oxide, and a metallic fluoride. An area of the at least one metal-element containing portion is in a range of 0.3 mm2 to 3.2 mm2.
    Type: Application
    Filed: February 28, 2023
    Publication date: March 21, 2024
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasunobu YAMASHITA, Kakuya UEDA, Mitsuhiro OKI, Yasuhiro HARADA, Norio TAKAMI
  • Publication number: 20240088385
    Abstract: In general, according to one embodiment, a niobium-titanium oxide is provided. The niobium-titanium oxide satisfies Formulae (1) to (3) below in an L*a*b* color space according to Japanese Industrial Standard JIS Z 8722:2009: 95.0?L*?100??(1) ?1.0?a*?1.0??(2) ?1.0?b*?6.0??(3).
    Type: Application
    Filed: February 16, 2023
    Publication date: March 14, 2024
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiaki MURATA, Kakuya UEDA, Yasuhiro HARADA, Kazuki ISE, Norio TAKAMI
  • Publication number: 20240079576
    Abstract: A niobium-titanium-based oxide includes niobium-titanium-based oxide particles, wherein an Si2p peak area and an Nb3d peak area, as measured by X-ray photoelectron spectroscopy for the niobium-titanium-based oxide particles, satisfy a ratio A of 0.40?A?1.0, provided that the ratio A is the Si2p peak area/the Nb3d peak area.
    Type: Application
    Filed: August 30, 2023
    Publication date: March 7, 2024
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kakuya UEDA, Yoshiaki MURATA, Yasuhiro HARADA, Norio TAKAMI, Shinsuke MATSUNO
  • Patent number: 11894553
    Abstract: According to one embodiment, an electrode is provided. The electrode includes a current collector, and an active material-containing layer which is formed on a surface of the current collector and includes a plurality of niobium titanium composite oxide particles. A X-ray diffraction pattern using a Cu-K? ray source with respect to a surface of the active material-containing layer includes a peak A with a highest intensity in a range of 2?=26°±0.2° and a peak B with a highest intensity in a range of 2?=23.9°±0.2°. An intensity ratio (Ia/Ib) between an intensity Ia of the peak A and an intensity Ib of the peak B is in a range of 1.80 or more to 2.60 or less.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: February 6, 2024
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kakuya Ueda, Yasunobu Yamashita, Keigo Hoshina, Tetsuya Sasakawa, Yasuhiro Harada, Norio Takami, Shinsuke Matsuno
  • Publication number: 20230299390
    Abstract: According to one embodiment, provided is an air battery including a negative electrode, an air electrode to which oxygen is supplied, a solid electrolyte layer positioned between the negative electrode and the air electrode, an aqueous electrolyte layer positioned between the solid electrolyte layer and the air electrode, and a proton conduction layer positioned between the aqueous electrolyte layer and the air electrode. The aqueous electrolyte layer includes an aqueous electrolyte including a polyprotic acid having two or more carboxyl groups, an electrolyte salt, and water.
    Type: Application
    Filed: August 31, 2022
    Publication date: September 21, 2023
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kakuya UEDA, Keigo HOSHINA
  • Publication number: 20230299278
    Abstract: In general, according to one embodiment, an active material including particles containing a niobium-containing oxide is provided. The particles containing the niobium-containing oxide contain single particles having protruded parts and recessed parts. Three or more of the recessed parts satisfy 0.1?a/L?0.5 (1). Where L is a length of a tangent line in contact with a first protruded part and a second protruded part, and a is a maximum length of a perpendicular line from the tangent line to a recessed part defined by the first protruded part and the second protruded part.
    Type: Application
    Filed: August 31, 2022
    Publication date: September 21, 2023
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasuhiro HARADA, Yasunobu YAMASHITA, Yorikazu YOSHIDA, Kakuya UEDA, Norio TAKAMI
  • Publication number: 20220344651
    Abstract: According to one embodiment, an electrode is provided. The electrode includes a current collector and an active material-containing layer formed on the current collector and containing active material particles. A median diameter (D50) calculated from a volume-based frequency distribution chart obtained by a laser diffraction/scattering method for the active material particles is in the range of 1.2 ?m to 4.0 ?m. In the frequency distribution chart, a proportion of an integrated amount of particles having a particle size of 2.0 ?m or less is in the range of 36% to 62% with respect to the entire active material particles on a volume basis.
    Type: Application
    Filed: February 28, 2022
    Publication date: October 27, 2022
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kakuya UEDA, Yasunobu YAMASHITA, Yasuhiro HARADA, Norio TAKAMI, Shinsuke MATSUNO
  • Publication number: 20220293926
    Abstract: According to one embodiment, an active material is provided. The active material includes an Nb2TiO7 phase and at least one Nb-rich phase selected from the group consisting of an Nb10Ti2O29 phase, an Nb14TiO37 phase, and an Nb24TiO64 phase. The active material includes potassium and phosphorus, and a total concentration of potassium and phosphorus in the active material is in the range of 0.01% by mass to 5.00% by mass. An average crystallite diameter is in the range of 80 nm to 150 nm. In a particle size distribution chart obtained by a laser diffraction scattering method, D10 is 0.3 ?m or greater, and D90 is 10 ?m or less. The active material satisfies a peak intensity ratio represented by the following Formula (1). 0<IB/IA0.
    Type: Application
    Filed: August 23, 2021
    Publication date: September 15, 2022
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasuhiro HARADA, Yorikazu YOSHIDA, Kakuya UEDA, Norio TAKAMI
  • Publication number: 20220085365
    Abstract: According to one embodiment, an electrode is provided. The electrode includes a current collector, and an active material-containing layer which is formed on a surface of the current collector and includes a plurality of niobium titanium composite oxide particles. A X-ray diffraction pattern using a Cu-K? ray source with respect to a surface of the active material-containing layer includes a peak A with a highest intensity in a range of 2?=26°±0.2° and a peak B with a highest intensity in a range of 2?=23.9°±0.2°. An intensity ratio (Ia/Ib) between an intensity Ia of the peak A and an intensity Ib of the peak B is in a range of 1.80 or more to 2.60 or less.
    Type: Application
    Filed: February 26, 2021
    Publication date: March 17, 2022
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kakuya UEDA, Yasunobu YAMASHITA, Keigo HOSHINA, Tetsuya SASAKAWA, Yasuhiro HARADA, Norio TAKAMI, Shinsuke MATSUNO