Patents by Inventor Kamiar J. Karimi

Kamiar J. Karimi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967842
    Abstract: Methods and systems for protection/disconnect of airborne high-power/energy high-voltage modular multi-string battery packs (such as battery packs for airborne electric propulsion systems). The methods and systems are based on a dissimilar/redundant distributed battery pack protection architecture and use a smart mid-point battery disconnect in conjunction with centralized battery management system. The resulting battery disconnect/protection system is configured to detect bus faults, load faults and string faults and then take appropriate action to isolate the detected fault. For example, in response to a short circuit in one battery string, the faulty battery string may be disconnected from the positive and negative busbars while the remaining battery strings continue to provide power.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: April 23, 2024
    Assignee: The Boeing Company
    Inventors: Vyacheslav Khozikov, Frederic Lacaux, Eugene V. Solodovnik, John A. Trela, Kamiar J. Karimi
  • Patent number: 11878594
    Abstract: Methods and apparatus for detecting and characterizing arc faults in an aerospace electric propulsion system and then coordinating the operation of various elements of the protection system to execute a fault-clearing sequence. In a current-based method, the arc is detected and characterized based on differential readouts from current sensors. The difference between currents measured at two ends of a protection zone are compared to a difference threshold. In a power-based method, the arc is detected and characterized based on differential readouts from voltage and current sensors. The differential voltage and current readouts are used to compute the respective powers at two ends of a protection zone. The difference between the respective powers is integrated over a period of time and then the integrated difference is compared to a difference threshold. A differential protection trip mode is invoked when the difference threshold is exceeded.
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: January 23, 2024
    Assignee: The Boeing Company
    Inventors: Vyacheslav Khozikov, Eugene V. Solodovnik, Frederic Lacaux, Kamiar J. Karimi
  • Publication number: 20230361590
    Abstract: An example method includes receiving, from one or more sensors of a battery module, sensor information indicative of a health status of the battery module; determining, based on sensor information, battery health parameters of the battery module; determining, based on the battery health parameters, a target state-of-charge (SoC) indicating a target battery capacity to which the battery module is to be charged; determining an end-of-charge voltage (EOCV) to be attained at an end of charging the battery module to achieve the target SoC; and commanding a battery charger to charge the battery module until the EOCV is achieved.
    Type: Application
    Filed: May 9, 2022
    Publication date: November 9, 2023
    Inventors: Frederic Lacaux, John A. Trela, Glen M. Brown, Kamiar J. Karimi, Mehdy Barekatein
  • Patent number: 11794913
    Abstract: An electric propulsion unit comprising a housing, an AC motor, a beta rod, a propeller, a governor, an inverter, and a controller. The AC motor is disposed within the housing and includes bearings supported inside the housing, a hollow motor shaft rotatably coupled to the housing by the bearings, a stator which is supported by the housing, and a rotor which is mounted to the hollow motor shaft. The beta rod is axially translatable inside the hollow motor shaft. The propeller is mechanically coupled to the hollow motor shaft. The propeller includes propeller blades having an adjustable pitch angle which depends on an axial position of the beta rod. The governor is configured to adjust a pitch angle of the propeller blades by actuating axial translation of the beta rod. The controller is disposed inside the housing and configured to control the pitch angle of the propeller blades.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: October 24, 2023
    Assignee: The Boeing Company
    Inventors: Frederic Lacaux, Kamiar J. Karimi, Eugene V. Solodovnik, Aaron J. Kutzmann, Patrick R. Darmstadt, Mary E. Beckman, Alejandro Silva, Nicholas J. Silveri, Esther S. Zidovetzki
  • Publication number: 20230261476
    Abstract: An electrical system for an aircraft includes an AC electric power source electrically connected to a rotary electric motor via a plurality of AC contactors. An AC/DC inverter is electrically connected to the rotary electric motor, a DC power bus is electrically connected to the AC/DC inverter, and a plurality of sensors are arranged to monitor electric currents between the AC electric power source and the rotary electric motor. A first controller is arranged to control the AC/DC inverter; and a second controller is arranged to monitor the sensors and are operatively connected to the AC contactors. The second controller is operable to monitor, via the sensors, the electric currents between the AC electric power source and the rotary electric motor, and detect a fault based upon the electric currents, and deactivate the AC contactors in response to the fault.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 17, 2023
    Applicant: The Boeing Company
    Inventors: Frederic Lacaux, Shengyi Liu, Eugene V. Solodovnik, Vyacheslav Khozikov, Kamiar J. Karimi
  • Publication number: 20230261551
    Abstract: A discrete signal interlock system for activating an electric machine in an aircraft includes a first controller, a second controller, and a power source coupled via a single wiring harness bundle to a motor controller that is operatively connected to the electric machine. The motor controller includes a first circuit that is electrically coupled to a driver enabler of the motor controller, and a second circuit that is electrically coupled to a driver of the motor controller. The single wiring harness bundle encloses a first signal cable electrically coupling the first controller to the first circuit, a second signal cable electrically coupling the second controller to the second circuit, a first power cable electrically coupled to the first circuit, and a second power cable electrically coupled to the second circuit. Activation of the motor controller requires activation of the driver in concert with activation of the driver enabler.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 17, 2023
    Applicant: The Boeing Company
    Inventors: Frederic Lacaux, Kamiar J. Karimi, Eugene V. Solodovnik, Vyacheslav Khozikov
  • Publication number: 20230192304
    Abstract: A computer-implemented method for optimally operating a hybrid-electric propulsion system by control of equipment dynamics. Prior to start of a mission, an original energy management plan is generated which is calculated to minimize estimated life-cycle operating costs for the vehicle during the mission. During an initial portion of the mission, operations of first and second power sources, a power distribution system, and a propulsion system are controlled such that a power mixture is supplied to the propulsion system from the first and second power sources in accordance with the original energy management plan. During the initial portion of the mission, a modified energy management plan is generated which is calculated to minimize estimated life-cycle operating costs for the vehicle.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 22, 2023
    Applicant: The Boeing Company
    Inventors: Raju Shankar Mattikalli, Hubert Wong, Camron R. Call, Kamiar J. Karimi
  • Patent number: 11626623
    Abstract: A battery and related methods are described. The battery can include a plurality of battery cell segments. Each of the battery cell segments can include: a positive temperature coefficient (PTC) material whose resistance increases with temperature, an anode segment, a cathode segment, and one or more current limiters. The one or more current limiters of a battery cell segment are configured to conditionally electrically isolate the battery cell segment based on an occurrence of a short circuit within the battery cell segment. The battery can be used to store electrical power and/or provide electrical power to a load.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: April 11, 2023
    Assignee: The Boeing Company
    Inventors: Shengyi Liu, John A. Trela, Kamiar J. Karimi
  • Patent number: 11626650
    Abstract: A battery and related methods are described. The battery can include a plurality of battery cell segments. Each of the battery cell segments can include an anode segment, a cathode segment, and one or more current limiters. The one or more current limiters are configured to conditionally electrically isolate the battery cell segment based on an occurrence of a short circuit within the battery cell segment. The battery can be used to store electrical power and/or provide electrical power to a load.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: April 11, 2023
    Assignee: The Boeing Company
    Inventors: Shengyi Liu, John A. Trela, Kamiar J. Karimi
  • Patent number: 11608186
    Abstract: An electric drive system including an impedance balancing noise filtering circuit is disclosed. The electric drive system includes a direct current (DC) power source configured to output DC power to an output port and an inverter configured to convert the DC power output by the DC power source into alternating current (AC) power that is provided to an input port of an AC load. The impedance balancing noise filtering circuit includes an impedance bridge electrically intermediate the output port of the DC power source and the input port of the AC load. The impedance balancing noise filtering circuit includes different sets of passive components that are positioned on both the DC-side and the AC-side of the inverter. These sets of passive components are configured to facilitate impedance balancing that reduces common-mode (CM) electromagnetic interference (EMI) emission at the output port of the DC power source.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: March 21, 2023
    Assignee: The Boeing Company
    Inventors: Eugene V. Solodovnik, Kamiar J. Karimi, Shengyi Liu
  • Publication number: 20230059046
    Abstract: Apparatus and methods for mitigating abrupt release of energy due to a short circuit or other fault external to battery modules in a battery pack. Each battery module includes a plurality of weakened fusible links, which may connect an associated cell to a virtual cell busbar or connect dedicated busbars. After the fault has been cleared and faulted battery modules have been bypassed, the battery pack is ready for reconnection to the electrical network to provide power for the load(s). The battery management includes detection and isolation of a fault followed by execution of an algorithm for reconnection of the battery pack to the power distribution system after burnout of the fusible links. In addition, the respective activation times for reconnecting operative (not faulty) modules in a faulty battery string versus reconnecting other operative battery strings in the battery pack are coordinated.
    Type: Application
    Filed: August 17, 2021
    Publication date: February 23, 2023
    Applicant: The Boeing Company
    Inventors: Vyacheslav Khozikov, Frederic Lacaux, John A. Trela, Kamiar J. Karimi
  • Publication number: 20220402364
    Abstract: Methods and apparatus for detecting and characterizing arc faults in an aerospace electric propulsion system and then coordinating the operation of various elements of the protection system to execute a fault-clearing sequence. In a current-based method, the arc is detected and characterized based on differential readouts from current sensors. The difference between currents measured at two ends of a protection zone are compared to a difference threshold. In a power-based method, the arc is detected and characterized based on differential readouts from voltage and current sensors. The differential voltage and current readouts are used to compute the respective powers at two ends of a protection zone. The difference between the respective powers is integrated over a period of time and then the integrated difference is compared to a difference threshold. A differential protection trip mode is invoked when the difference threshold is exceeded.
    Type: Application
    Filed: April 15, 2022
    Publication date: December 22, 2022
    Applicant: The Boeing Company
    Inventors: Vyacheslav Khozikov, Eugene V. Solodovnik, Frederic Lacaux, Kamiar J. Karimi
  • Patent number: 11469754
    Abstract: A system including a power modulation device and an active voltage balancing system is provided. The power modulation device includes first and second semiconductor switches in series. The active voltage balancing system includes a differential voltage logic configured to detect a voltage difference between the first and second semiconductor switches and edge capture logic configured to detect a time difference between when the first and second semiconductor switches are switched. The active voltage balancing system further includes a micro-controller configured to output first and second gate drive signals to drive the first and second semiconductor switches. The micro-controller is configured to tune the first and second gate drive signals based on the voltage difference to compensate for voltage imbalance and the time difference to compensate for drive signal asymmetry to actively balance a voltage between the first and second semiconductor switches.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: October 11, 2022
    Assignee: THE BOEING COMPANY
    Inventors: Eugene V. Solodovnik, Kamiar J. Karimi, Shengyi Liu
  • Patent number: 11431176
    Abstract: A system and method for providing power to a vehicle is disclosed. The system can include a plurality of parallel module converter modules (“modules”) each capable of supplying a predetermined electrical load. The plurality of parallel module converter modules can be networked to form a parallel module converter (“converter”) for prioritizing and allocating each electrical load to one or more parallel module converter modules. Each module can include an internal protection controller and a logic controller. The individual modules can provide power to various loads in the vehicle either alone, or in concert with other modules. The system can enable fewer power controllers to be used, saving weight and time. The controllers in the system can also be utilized at a higher level reducing unnecessary redundancy.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: August 30, 2022
    Assignee: THE BOEING COMPANY
    Inventors: Adam J. Winstanley, Eugene V. Solodovnik, Kamiar J. Karimi, Shengyi Liu, Lijun Gao, Matthew J. Krolak
  • Publication number: 20220255335
    Abstract: Methods and systems for charging a battery string while protecting against overcharging. One system includes: a pair of disconnect devices; a power distribution bus which is electrically connected to a battery string via the disconnect devices; a battery charger connected to supply battery power to the power distribution bus for charging the battery string; a module monitoring unit configured to sense individual battery cell voltages during charging; a first processor configured to activate one disconnect device to open when the sensed individual battery cell voltages indicate overcharging; a plurality of sensors connected to sense a full-string voltage measured across the battery string and first and second half-string voltages measured across first and second half-strings of the battery string; and a second processor connected to receive sensor data during charging.
    Type: Application
    Filed: January 18, 2022
    Publication date: August 11, 2022
    Applicant: The Boeing Company
    Inventors: Vyacheslav Khozikov, Frederic Lacaux, Eugene V. Solodovnik, John A. Trela, Kolten C. Miller, Kamiar J. Karimi
  • Publication number: 20220212808
    Abstract: An electric drive system including an impedance balancing noise filtering circuit is disclosed. The electric drive system includes a direct current (DC) power source configured to output DC power to an output port and an inverter configured to convert the DC power output by the DC power source into alternating current (AC) power that is provided to an input port of an AC load. The impedance balancing noise filtering circuit includes an impedance bridge electrically intermediate the output port of the DC power source and the input port of the AC load. The impedance balancing noise filtering circuit includes different sets of passive components that are positioned on both the DC-side and the AC-side of the inverter. These sets of passive components are configured to facilitate impedance balancing that reduces common-mode (CM) electromagnetic interference (EMI) emission at the output port of the DC power source.
    Type: Application
    Filed: October 5, 2021
    Publication date: July 7, 2022
    Inventors: Eugene V. Solodovnik, Kamiar J. Karimi, Shengyi Liu
  • Publication number: 20220216865
    Abstract: A system including a power modulation device and an active voltage balancing system is provided. The power modulation device includes first and second semiconductor switches in series. The active voltage balancing system includes a differential voltage logic configured to detect a voltage difference between the first and second semiconductor switches and edge capture logic configured to detect a time difference between when the first and second semiconductor switches are switched. The active voltage balancing system further includes a micro-controller configured to output first and second gate drive signals to drive the first and second semiconductor switches. The micro-controller is configured to tune the first and second gate drive signals based on the voltage difference to compensate for voltage imbalance and the time difference to compensate for drive signal asymmetry to actively balance a voltage between the first and second semiconductor switches.
    Type: Application
    Filed: October 5, 2021
    Publication date: July 7, 2022
    Inventors: Eugene V. Solodovnik, Kamiar J. Karimi, Shengyi Liu
  • Publication number: 20220119121
    Abstract: An electric propulsion unit comprising a housing, an AC motor, a beta rod, a propeller, a governor, an inverter, and a controller. The AC motor is disposed within the housing and includes a plurality of bearings supported inside the housing, a hollow motor shaft rotatably coupled to the housing by the plurality of bearings, a stator which is supported by the housing, and a rotor which is mounted to the hollow motor shaft. The beta rod is axially translatable inside the hollow motor shaft. The propeller is mechanically coupled to the hollow motor shaft. The propeller includes propeller blades having an adjustable pitch angle which depends on an axial position of the beta rod. The governor is configured to adjust a pitch angle of the propeller blades by actuating axial translation of the beta rod. The inverter is disposed within the housing and connected to receive DC power for conversion into AC power.
    Type: Application
    Filed: July 16, 2021
    Publication date: April 21, 2022
    Applicant: The Boeing Company
    Inventors: Frederic Lacaux, Kamiar J. Karimi, Eugene V. Solodovnik, Aaron J. Kutzmann, Patrick R. Darmstadt, Mary E. Beckman, Alejandro Silva, Nicholas J. Silveri, Esther S. Zidovetzki
  • Publication number: 20220115878
    Abstract: Methods and systems for protection/disconnect of airborne high-power/energy high-voltage modular multi-string battery packs (such as battery packs for airborne electric propulsion systems). The methods and systems are based on a dissimilar/redundant distributed battery pack protection architecture and use a smart mid-point battery disconnect in conjunction with centralized battery management system. The resulting battery disconnect/protection system is configured to detect bus faults, load faults and string faults and then take appropriate action to isolate the detected fault. For example, in response to a short circuit in one battery string, the faulty battery string may be disconnected from the positive and negative busbars while the remaining battery strings continue to provide power.
    Type: Application
    Filed: July 13, 2021
    Publication date: April 14, 2022
    Applicant: The Boeing Company
    Inventors: Vyacheslav Khozikov, Frederic Lacaux, Eugene V. Solodovnik, John A. Trela, Kamiar J. Karimi
  • Patent number: 11128251
    Abstract: A fault-tolerant power system architecture for aircraft electric propulsion. The fault-tolerant systems continue to operate in the event of the failure of (or one or more faults within) some component. The fault-tolerant design enables the system to continue its intended operation, possibly at a reduced level, rather than failing completely, when some part of the system fails. When a turn-to-turn fault in an AC motor is detected, a motor controller will short three top or three bottom switches in the inverter together (effectively shorting the associated stator windings) to divert fault current from the motor windings to the motor controller, where cooling is available. Also, when a fault in or at the input to a motor controller is detected, the motor controller cuts off power to the motor by issuing a command that causes an upstream contactor with high-voltage DC bus input to open.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: September 21, 2021
    Assignee: The Boeing Company
    Inventors: Eugene V. Solodovnik, Frederic Lacaux, Kamiar J. Karimi