Patents by Inventor Kamil Mielczarek

Kamil Mielczarek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118602
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 11, 2024
    Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
  • Patent number: 11953821
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: April 9, 2024
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
  • Publication number: 20240114766
    Abstract: A method for producing a perovskite material photovoltaic device, the method comprising: depositing a layer comprising a fullerene or fullerene derivative on a perovskite material; depositing a cross-linking agent on the perovskite material or the layer comprising the fullerene or fullerene derivative, wherein the cross-linking agent comprises a silane, wherein the silane is a halosilyalkane; and depositing one or more polymers on the perovskite material or the layer comprising the fullerene or fullerene derivative.
    Type: Application
    Filed: December 6, 2023
    Publication date: April 4, 2024
    Inventors: Michael D. Irwin, Kamil Mielczarek, Nicholas Charles Anderson
  • Patent number: 11895906
    Abstract: A method for producing a perovskite material photovoltaic device, the method comprising: depositing a layer comprising a fullerene or fullerene derivative on a perovskite material; depositing a cross-linking agent on the perovskite material or the layer comprising the fullerene or fullerene derivative, wherein the cross-linking agent comprises a silane, wherein the silane is a halosilyalkane; and depositing one or more polymers on the perovskite material or the layer comprising the fullerene or fullerene derivative.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: February 6, 2024
    Assignee: CubicPV Inc.
    Inventors: Michael David Irwin, Kamil Mielczarek, Nicholas Charles Anderson
  • Patent number: 11863122
    Abstract: The performance of photosensitive devices over time may be tested by configuring a photosensitive device test system that includes a light source plate that exposes photosensitive devices within a container to a specified light intensity. The light intensity may be adjusted by a programmable power source according to one or more thresholds. A test may last for a set duration with performance measurements being taken at predetermined intervals throughout the duration. Feedback from the photosensitive device test system may be recorded to determine whether to increase light intensity, to stop testing, to continue testing, and whether one or more environmental conditions should be altered. Measurements may be sent to a client for analysis and display to a user.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: January 2, 2024
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Jerome Lovelace, Kamil Mielczarek
  • Publication number: 20220302877
    Abstract: The performance of photosensitive devices over time may be tested by configuring a photosensitive device test system that includes a light source plate that exposes photosensitive devices within a container to a specified light intensity. The light intensity may be adjusted by a programmable power source according to one or more thresholds. A test may last for a set duration with performance measurements being taken at predetermined intervals throughout the duration. Feedback from the photosensitive device test system may be recorded to determine whether to increase light intensity, to stop testing, to continue testing, and whether one or more environmental conditions should be altered. Measurements may be sent to a client for analysis and display to a user.
    Type: Application
    Filed: June 9, 2022
    Publication date: September 22, 2022
    Inventors: Michael D. Irwin, Jerome Lovelace, Kamil Mielczarek
  • Patent number: 11387779
    Abstract: The performance of photosensitive devices over time may be tested by configuring a photosensitive device test system that includes a light source plate that exposes photosensitive devices within a container to a specified light intensity. The light intensity may be adjusted by a programmable power source according to one or more thresholds. A test may last for a set duration with performance measurements being taken at predetermined intervals throughout the duration. Feedback from the photosensitive device test system may be recorded to determine whether to increase light intensity, to stop testing, to continue testing, and whether one or more environmental conditions should be altered. Measurements may be sent to a client for analysis and display to a user.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: July 12, 2022
    Assignee: CubicPV Inc.
    Inventors: Michael D. Irwin, Jerome Lovelace, Kamil Mielczarek
  • Publication number: 20220187695
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
  • Publication number: 20220140246
    Abstract: A method for producing an organic non-fullerene electron transport compound includes mixing naphthalene-1,4,5,8-tetracarboxylic dianhydride and an amine compound in dimethylformamide. The method also includes heating the mixture to a temperature greater than or equal to 70° and less than or equal to 160° C. for an amount of time greater than or equal to 1 hour and less than or equal to 24 hours. The method further includes isolating an organic non-fullerene electron transport compound reaction product.
    Type: Application
    Filed: January 19, 2022
    Publication date: May 5, 2022
    Inventors: Michael David Irwin, Minh Tu Nguyen, Kamil Mielczarek
  • Patent number: 11300870
    Abstract: A method for preparing photoactive perovskite materials. The method comprises the steps of: introducing a lead halide and a first solvent to a first vessel and contacting the lead halide with the first solvent to dissolve the lead halide to form a lead halide solution, introducing a Group 1 metal halide a second solvent into a second vessel and contacting the Group 1 metal halide with the second solvent to dissolve the Group 1 metal halide to form a Group 1 metal halide solution, and contacting the lead halide solution with the Group 1 metal halide solution to form a thin-film precursor ink. The method further comprises depositing the thin-film precursor ink onto a substrate, drying the thin-film precursor ink to form a thin film, annealing the thin film; and rinsing the thin film with a salt solution.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: April 12, 2022
    Assignee: CUBICPV INC.
    Inventors: Michael D. Irwin, Kamil Mielczarek, Vivek V. Dhas
  • Patent number: 11264572
    Abstract: A method for producing an organic non-fullerene electron transport compound includes mixing naphthalene-1,4,5,8-tetracarboxylic dianhydride and an amine compound in dimethylformamide. The method also includes heating the mixture to a temperature greater than or equal to 70° and less than or equal to 160° C. for an amount of time greater than or equal to 1 hour and less than or equal to 24 hours. The method further includes isolating an organic non-fullerene electron transport compound reaction product.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: March 1, 2022
    Assignee: CubicPV Inc.
    Inventors: Michael David Irwin, Minh Tu Nguyen, Kamil Mielczarek
  • Publication number: 20220045275
    Abstract: A method for producing a perovskite material photovoltaic device, the method comprising: depositing a layer comprising a fullerene or fullerene derivative on a perovskite material; depositing a cross-linking agent on the perovskite material or the layer comprising the fullerene or fullerene derivative, wherein the cross-linking agent comprises a silane, wherein the silane is a halosilyalkane; and depositing one or more polymers on the perovskite material or the layer comprising the fullerene or fullerene derivative.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Inventors: Michael David Irwin, Kamil Mielczarek, Nicholas Charles Anderson
  • Publication number: 20220033658
    Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes. The active layer may have perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.
    Type: Application
    Filed: October 20, 2021
    Publication date: February 3, 2022
    Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas, Kamil Mielczarek
  • Patent number: 11180660
    Abstract: Photovoltaic devices such as solar cells, hybrid solar cell-batteries, and other such devices may include an active layer disposed between two electrodes. The active layer may have perovskite material and other material such as mesoporous material, interfacial layers, thin-coat interfacial layers, and combinations thereof. The perovskite material may be photoactive. The perovskite material may be disposed between two or more other materials in the photovoltaic device. Inclusion of these materials in various arrangements within an active layer of a photovoltaic device may improve device performance. Other materials may be included to further improve device performance, such as, for example: additional perovskites, and additional interfacial layers.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: November 23, 2021
    Assignee: CUBIC PEROVSKITE LLC
    Inventors: Michael D. Irwin, Jerred A. Chute, Vivek V. Dhas, Kamil Mielczarek
  • Patent number: 11171290
    Abstract: A photovoltaic device includes a photoactive material comprising a perovskite material and an interfacial layer comprising a cross-linked polymer that comprises a fullerene or fullerene derivative, a cross-linking agent, and one or more polymers selected from the group consisting of polystyrene, [6,6]-phenyl-C61-butyric acid methyl ester, poly(4-vinylphenol), [6,6]-phenyl-C61-butyric acid, and any combination thereof.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: November 9, 2021
    Assignee: Hunt Perovskite Technologies, L.L.C.
    Inventors: Michael David Irwin, Kamil Mielczarek, Nicholas Charles Anderson
  • Publication number: 20210159022
    Abstract: A photovoltaic device includes a first electrode, a first photoactive material layer, one or more interfacial layers, a second photoactive material layer comprising a 2-D perovskite material having the formula (C?)a(C)bMnX3n+1 and a second electrode. C? is a bulky organic cation, C is a small organic or inorganic cation, M is a metal, X is a halide, a and b are real numbers, and n is an integer.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 27, 2021
    Inventors: Michael David Irwin, Duyen Hanh Cao, Kamil Mielczarek
  • Publication number: 20210159135
    Abstract: A photovoltaic device includes a photoactive material comprising a perovskite material and an interfacial layer comprising a cross-linked polymer that comprises a fullerene or fullerene derivative, a cross-linking agent, and one or more polymers selected from the group consisting of polystyrene, [6,6]-phenyl-C61-butyric acid methyl ester, poly(4-vinylphenol), [6,6]-phenyl-C61-butyric acid, and any combination thereof.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 27, 2021
    Inventors: Michael David Irwin, Kamil Mielczarek, Nicholas Charles Anderson
  • Publication number: 20210159419
    Abstract: A method for producing an organic non-fullerene electron transport compound includes mixing naphthalene-1,4,5,8-tetracarboxylic dianhydride and an amine compound in dimethylformamide. The method also includes heating the mixture to a temperature greater than or equal to 70° and less than or equal to 160° C. for an amount of time greater than or equal to 1 hour and less than or equal to 24 hours. The method further includes isolating an organic non-fullerene electron transport compound reaction product.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 27, 2021
    Inventors: Michael David Irwin, Minh Tu Nguyen, Kamil Mielczarek
  • Publication number: 20210021234
    Abstract: The performance of photosensitive devices over time may be tested by configuring a photosensitive device test system that includes a light source plate that exposes photosensitive devices within a container to a specified light intensity. The light intensity may be adjusted by a programmable power source according to one or more thresholds. A test may last for a set duration with performance measurements being taken at predetermined intervals throughout the duration. Feedback from the photosensitive device test system may be recorded to determine whether to increase light intensity, to stop testing, to continue testing, and whether one or more environmental conditions should be altered. Measurements may be sent to a client for analysis and display to a user.
    Type: Application
    Filed: October 5, 2020
    Publication date: January 21, 2021
    Inventors: Michael D. Irwin, Jerome Lovelace, Kamil Mielczarek
  • Patent number: 10797641
    Abstract: The performance of photosensitive devices over time may be tested by configuring a photosensitive device test system that includes a light source plate that exposes photosensitive devices within a container to a specified light intensity. The light intensity may be adjusted by a programmable power source according to one or more thresholds. A test may last for a set duration with performance measurements being taken at predetermined intervals throughout the duration. Feedback from the photosensitive device test system may be recorded to determine whether to increase light intensity, to stop testing, to continue testing, and whether one or more environmental conditions should be altered. Measurements may be sent to a client for analysis and display to a user.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: October 6, 2020
    Assignee: Hunt Perovskite Technologies, LLC
    Inventors: Michael D. Irwin, Jerome Lovelace, Kamil Mielczarek