Patents by Inventor Kamran Karimi

Kamran Karimi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8494993
    Abstract: Iterative approaches to quantum computation are described. Incongruities in the behavior of the various individual elements in a quantum processor may be managed by establishing a set of equivalent configurations for the elements of the quantum processor. The quantum processor is programmed and operated using each equivalent configuration to determine a set of solutions. The solutions are evaluated to determine a preferred solution that best satisfies at least one criterion. Furthermore, thermodynamic effects from operating a quantum processor at non-absolute zero temperature can cause the ground state to be the most probable state into which the system will settle. By running multiple iterations the ground state may be identified as the state with the most frequent reoccurrences. Alternatively, the energy of each unique state may be calculated and the state that corresponds to the lowest energy may be returned as the solution to the problem.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: July 23, 2013
    Assignee: D-Wave Systems Inc.
    Inventors: Richard G. Harris, Geordie Rose, Kamran Karimi
  • Publication number: 20120023053
    Abstract: Iterative approaches to quantum computation are described. Incongruities in the behavior of the various individual elements in a quantum processor may be managed by establishing a set of equivalent configurations for the elements of the quantum processor. The quantum processor is programmed and operated using each equivalent configuration to determine a set of solutions. The solutions are evaluated to determine a preferred solution that best satisfies at least one criterion. Furthermore, thermodynamic effects from operating a quantum processor at non-absolute zero temperature can cause the ground state to be the most probable state into which the system will settle. By running multiple iterations the ground state may be identified as the state with the most frequent reoccurrences. Alternatively, the energy of each unique state may be calculated and the state that corresponds to the lowest energy may be returned as the solution to the problem.
    Type: Application
    Filed: June 23, 2010
    Publication date: January 26, 2012
    Applicant: D-WAVE SYSTEMS INC.
    Inventors: Richard G. Harris, Geordie Rose, Kamran Karimi