Patents by Inventor Kanishka Tyagi

Kanishka Tyagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11975365
    Abstract: Systems and methods for classifying materials utilizing one or more sensor systems, which may implement a machine learning system in order to identify or classify each of the materials, which may then be sorted into separate groups based on such an identification or classification. The machine learning system may utilize a neural network, and be previously trained to recognize and classify certain types of materials.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: May 7, 2024
    Assignee: Sortera Technologies, Inc.
    Inventors: Nalin Kumar, Manuel Gerardo Garcia, Jr., Kanishka Tyagi
  • Publication number: 20240134038
    Abstract: This document describes techniques and systems for stationary object detection and classification based on low-level radar data. Raw electromagnetic signals reflected off stationary objects and received by a radar system may be preprocessed to produce low-level spectrum data in the form of range-Doppler maps that retain all or nearly all the data present in the raw electromagnetic signals. The preprocessing may also filter non-stationary range-Doppler bins. The remaining low-level spectrum data represents stationary objects present in a field-of-view (FOV) of the radar system. The low-level spectrum data representing stationary objects can be fed to an end-to-end deep convolutional detection and classification network that is trained to classify and provide object bounding boxes for the stationary objects. The outputted classifications and bounding boxes related to the stationary objects may be provided to other driving systems to improve their functionality resulting in a safer driving experience.
    Type: Application
    Filed: October 7, 2022
    Publication date: April 25, 2024
    Inventors: Shan Zhang, Kanishka Tyagi, Steven Shaw, Narbik Manukian
  • Publication number: 20230410490
    Abstract: This document describes systems and techniques related to deep association for sensor fusion. For example, a model trained using deep machine learning techniques, may be used to generate an association score matrix that includes probabilities that tracks from different types of sensors are related to the same objects. This model may be trained using a convolutional recurrent neural network and include constraints not included in other training techniques. Focal loss can be used during training to compensate for imbalanced data samples and address difficult cases, and data expansion techniques can be used to increase the multi-sensor data space. Simple thresholding techniques can be applied to the association score matrix to generate an assignment matrix that indicates whether tracks from one sensor and tracks from another sensor match. In this manner, the track association process may be more accurate than current sensor fusion techniques, and vehicle safety may be increased.
    Type: Application
    Filed: September 2, 2022
    Publication date: December 21, 2023
    Inventors: Shan Zhang, Nianxia Cao, Kanishka Tyagi, Xiaohui Wang, Narbik Manukian
  • Publication number: 20230194700
    Abstract: This document describes techniques and systems for fuzzy labeling of low-level electromagnetic sensor data. Sensor data in the form of an energy spectrum is obtained and the points within an estimated geographic boundary of a scatterer represented by the smear is labeled with a value of one. The remaining points of the energy spectrum are labeled with values between zero and one with the values decreasing the further away each respective remaining point is from the geographic boundary. The fuzzy labeling process may harness more in-depth information available from the distribution of the energy in the energy spectrum. A model can be trained to efficiently label an energy spectrum map in this manner. This may result in lower computational costs than other labeling methods. Additionally, false detections by the sensor may be reduced resulting in more accurate detection and tracking of objects.
    Type: Application
    Filed: April 5, 2022
    Publication date: June 22, 2023
    Inventors: Yihang Zhang, Kanishka Tyagi, Narbik Manukian
  • Publication number: 20230140890
    Abstract: This document describes techniques and systems for machine-learning-based super resolution of radar data. A low-resolution radar image can be used as input to train a model for super resolution of radar data. A higher-resolution radar image, generated by an effective, but costly in terms of computing resources, traditional super resolution method, and the higher-resolution image can serve as ground truth for training the model. The resulting trained model may generate a high-resolution sensor image that closely approximates the image generated by the traditional method. Because this trained model needs only to be executed in feed-forward mode in the inference stage, it may be suited for real-time applications. Additionally, if low-level radar data is used as input for training the model, the model may be trained with more comprehensive information than can be obtained in detection level radar data.
    Type: Application
    Filed: April 28, 2022
    Publication date: May 11, 2023
    Inventors: Kanishka Tyagi, Yihang Zhang, Kaveh Ahmadi, Shan Zhang, Narbik Manukian
  • Publication number: 20230005362
    Abstract: This document describes techniques and systems for improving accuracy of predictions on radar data using vehicle-to-vehicle (V2V) technology. V2V communications data and the matching sensor data related to one or more vehicles in the vicinity of a host vehicle are collected. The V2V data is used as label data and the radar data is used as the input data for training the model. The training may either occur onboard the host vehicle or remotely. Further, multiple host vehicles may contribute data to train the model. Once the model has been updated with the included training, the updated model is deployed to the sensor tracking system of the host vehicle. By using the dataset that includes the V2V communications data and the matching sensor data, the updated model may accurately track other vehicles and enable the host vehicle to utilize advanced driver-assistance systems safely and reliably.
    Type: Application
    Filed: May 11, 2022
    Publication date: January 5, 2023
    Inventors: Rajashekar Billapati, Kanishka Tyagi, Narbik Manukian
  • Publication number: 20220335279
    Abstract: This document describes techniques and systems related to a radar system using a machine-learned model for stationary object detection. The radar system includes a processor that can receive radar data as time-series frames associated with electromagnetic (EM) energy. The processor uses the radar data to generate a range-time map of the EM energy that is input to a machine-learned model. The machine-learned model can receive as inputs extracted features corresponding to the stationary objects from the range-time map for multiple range bins at each of the time-series frames. In this way, the described radar system and techniques can accurately detect stationary objects of various sizes and extract critical features corresponding to the stationary objects.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 20, 2022
    Inventors: Kanishka Tyagi, Yihang Zhang, John Kirkwood, Shan Zhang, Sanling Song, Narbik Manukian
  • Patent number: 11415670
    Abstract: Techniques and apparatuses are described that implement object classification using low-level radar data. In particular, a radar system extracts features of a detected object based on low-level data. The radar system analyzes these features using machine learning to determine an object class associated with the detected object. By relying on low-level data, the radar system is able to extract additional information regarding the distribution of energy across range, range rate, azimuth, or elevation, which is not available in detection-level data. With the use of machine learning, the object can be classified quickly (e.g., within a single frame or observation), thereby enabling sufficient time for the autonomous-driving logic to initiate an appropriate action based on the object's class. Furthermore, this classification can be performed without the use of information from other sensors.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: August 16, 2022
    Assignee: Aptiv Technologies Limited
    Inventors: Kanishka Tyagi, John Kirkwood
  • Publication number: 20220023918
    Abstract: Systems and methods for classifying materials utilizing one or more sensor systems, which may implement a machine learning system in order to identify or classify each of the materials, which may then be sorted into separate groups based on such an identification or classification. The machine learning system may utilize a neural network, and be previously trained to recognize and classify certain types of materials.
    Type: Application
    Filed: October 6, 2021
    Publication date: January 27, 2022
    Applicant: Sortera Alloys, Inc.
    Inventors: Nalin Kumar, Manuel Gerardo Garcia, JR., Kanishka Tyagi
  • Publication number: 20210346916
    Abstract: Systems and methods for classifying materials utilizing one or more sensor systems, which may implement a machine learning system in order to identify or classify each of the materials, which may then be sorted into separate groups based on such an identification or classification. The machine learning system may utilize a neural network, and be previously trained to recognize and classify certain types of materials.
    Type: Application
    Filed: July 20, 2021
    Publication date: November 11, 2021
    Applicant: Sortera Alloys, Inc.
    Inventors: Nalin Kumar, Manuel Gerardo Garcia, JR., Kanishka Tyagi
  • Publication number: 20210293927
    Abstract: Techniques and apparatuses are described that implement object classification using low-level radar data. In particular, a radar system extracts features of a detected object based on low-level data. The radar system analyzes these features using machine learning to determine an object class associated with the detected object. By relying on low-level data, the radar system is able to extract additional information regarding the distribution of energy across range, range rate, azimuth, or elevation, which is not available in detection-level data. With the use of machine learning, the object can be classified quickly (e.g., within a single frame or observation), thereby enabling sufficient time for the autonomous-driving logic to initiate an appropriate action based on the object's class. Furthermore, this classification can be performed without the use of information from other sensors.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 23, 2021
    Inventors: Kanishka Tyagi, John Kirkwood
  • Patent number: 10710119
    Abstract: A material sorting system sorts materials utilizing a vision system that implements a machine learning system in order to identify or classify each of the materials, which are then sorted into separate groups based on such an identification or classification. The material sorting system may include an x-ray fluorescence system to perform a classification of the materials in combination with the vision system, whereby the classification efforts of the vision system and x-ray fluorescence system are combined in order to classify and sort the materials.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: July 14, 2020
    Assignee: UHV Technologies, Inc.
    Inventors: Nalin Kumar, Manuel Gerardo Garcia, Jr., Kanishka Tyagi
  • Publication number: 20180243800
    Abstract: A material sorting system sorts materials utilizing a vision system that implements a machine learning system in order to identify or classify each of the materials, which are then sorted into separate groups based on such an identification or classification. The material sorting system may include an x-ray fluorescence system to perform a classification of the materials in combination with the vision system, whereby the classification efforts of the vision system and x-ray fluorescence system are combined in order to classify and sort the materials.
    Type: Application
    Filed: April 26, 2018
    Publication date: August 30, 2018
    Inventors: Nalin Kumar, Manuel Gerardo Garcia, JR., Kanishka Tyagi