Patents by Inventor Kanmi Mao

Kanmi Mao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939225
    Abstract: A composition can include a Rho zeolite with a RHO topology having a Si to B ratio or a Si to Al ratio greater than or equal to 8. Making such a composition can include heating an aqueous reaction mixture having a molar ratio of atomic Si to atomic B of about 4 to about 50 or a molar ratio of atomic Si to atomic Al of about 4 to about 50 in the presence of a C4-C6 diquat of N,2-dimethylbenzimidazole structure directing agent to a temperature of at least 75° C. to produce a Rho zeolite.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: March 26, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Joseph M. Falkowski, Hilda Bouza Vroman, Allen W. Burton, Eugene Terefenko, Kanmi Mao, Karl G. Strohmaier
  • Publication number: 20230002525
    Abstract: A polymerization process includes contacting an ethylene feed containing ethylene monomers with a catalyst feed containing a hafnium-based or zirconium-based single-site catalyst in a solution so as to polymerize the ethylene monomers into long-chain branched high density polyethylene having on average a long-chain branch/polymer chain less than 10 and greater than 0.25. A polymerization composition includes ethylene; a hafnium-based or zirconium-based single-site catalyst; and a long-chain branched high density polyethylene polymerization product, where the long-chain branched high density polyethylene has on average a long-chain branch/polymer chain less than 10 and greater than 0.25; and where at least one of the ethylene, the catalyst, and the product is in solution.
    Type: Application
    Filed: November 17, 2020
    Publication date: January 5, 2023
    Inventors: Gabor KISS, Thomas SUN, Johannes M. SOULAGES, Kanmi MAO
  • Patent number: 11396450
    Abstract: Sulfur-tolerant reforming catalysts that include bulk alumina in the catalyst support are provided. The sulfur-tolerant reforming catalysts can include a sulfur-tolerant catalytic metal to facilitate reforming. The catalyst can further include a support material that includes at least some alumina as bulk alumina and/or octahedrally coordinated alumina. The sulfur-tolerant reforming catalysts can be regenerated, such as periodically regenerated, under relatively mild conditions that allow the catalysts to maintain reforming activity in the presence of 1 vppm to 1000 vppm of sulfur in the feed for reforming.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: July 26, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Brian M. Weiss, Tilman W. Beutel, Herbert W. Barry, Gerardo J. Majano Sanchez, John F. Brody, Walter Weissman, Kanmi Mao
  • Patent number: 11384052
    Abstract: Compositions comprising a sulfonated reaction product or a salt thereof may be prepared from a cyclohexylbenzene compound that has been alkylated with an olefin of formula R1R2CCH2, wherein R1 is a C6-C24 hydrocarbyl group, and R2 is H or a C6-C24 hydrocarbyl group. Methods for sulfonating an alkylated cyclohexylbenzene compound prepared from a cyclohexylbenzene compound that has been alkylated with an olefin of formula R1R2CCH2, wherein R1 is a C6-C24 hydrocarbyl group, and R2 is H or a C6-C24 hydrocarbyl group may comprise contacting the alkylated cyclohexylbenzene compound with a sulfonating reagent; forming a sulfonated reaction product; and converting the sulfonated reaction product into a sulfonate salt.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: July 12, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Abhimanyu O. Patil, Satish Bodige, Arben Jusufi, Shane Deighton, Kanmi Mao, Alan A. Galuska
  • Patent number: 11292756
    Abstract: Provided herein are novel extended branched alcohols having a lower branching number and improved biodegradability when compared to other branched alcohols. Also provided are novel extended branched ethoxylates having surfactant properties which can be more efficient in reducing surface tension when compared to the ethoxylated form of other branched alcohols. Further provided are novel syntheses of making extended branched alcohols and extended branched ethoxylates.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: April 5, 2022
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ross Mabon, Shane Deighton, Arben Jusufi, Kanmi Mao
  • Publication number: 20210380425
    Abstract: A composition can include a Rho zeolite with a RHO topology having a Si to B ratio or a Si to A1 ratio greater than or equal to 8. Making such a composition can include heating an aqueous reaction mixture having a molar ratio of atomic Si to atomic B of about 4 to about 50 or a molar ratio of atomic Si to atomic Al of about 4 to about 50 in the presence of a C4-C6 diquat of N,2-dimethylbenzimidazole structure directing agent to a temperature of at least 75° C. to produce a Rho zeolite.
    Type: Application
    Filed: November 1, 2019
    Publication date: December 9, 2021
    Inventors: Joseph M. Falkowski, Hilda Bouza Vroman, Allen W. Burton, Eugene Terefenko, Kanmi Mao, Karl G. Strohmaier
  • Patent number: 11168053
    Abstract: Compositions comprising a sulfonated reaction product or a salt thereof may be prepared from a biphenyl compound that has been alkylated with an olefin of formula R1R2CCH2, wherein R1 is a C6-C24 hydrocarbyl group, and R2 is H or a C6-C24 hydrocarbyl group. Methods for sulfonating an alkylated biphenyl compound prepared from a biphenyl compound that has been alkylated with an olefin of formula R1R2CCH2, wherein R1 is a C6-C24 hydrocarbyl group, and R2 is H or a C6-C24 hydrocarbyl group may comprise contacting the alkylated biphenyl compound with a sulfonating reagent; forming a sulfonated reaction product; and converting the sulfonated reaction product into a sulfonate salt.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: November 9, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Abhimanyu O. Patil, Satish Bodige, Arben Jusufi, Shane Deighton, Kanmi Mao, Alan A. Galuska
  • Publication number: 20210188749
    Abstract: Provided herein are novel extended branched alcohols having a lower branching number and improved biodegradability when compared to other branched alcohols. Also provided are novel extended branched ethoxylates having surfactant properties which can be more efficient in reducing surface tension when compared to the ethoxylated form of other branched alcohols. Further provided are novel syntheses of making extended branched alcohols and extended branched ethoxylates.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 24, 2021
    Inventors: Ross Mabon, Shane Deighton, Arben Jusufi, Kanmi Mao
  • Publication number: 20210070701
    Abstract: Compositions comprising a sulfonated reaction product or a salt thereof may be prepared from a biphenyl compound that has been alkylated with an olefin of formula R1R2CCH2, wherein R1 is a C6-C24 hydrocarbyl group, and R2 is H or a C6-C24 hydrocarbyl group. Methods for sulfonating an alkylated biphenyl compound prepared from a biphenyl compound that has been alkylated with an olefin of formula R1R2CCH2, wherein R1 is a C6-C24 hydrocarbyl group, and R2 is H or a C6-C24 hydrocarbyl group may comprise contacting the alkylated biphenyl compound with a sulfonating reagent; forming a sulfonated reaction product; and converting the sulfonated reaction product into a sulfonate salt.
    Type: Application
    Filed: August 18, 2020
    Publication date: March 11, 2021
    Inventors: Abhimanyu O. Patil, Satish Bodige, Arben Jusufi, Shane Deighton, Kanmi Mao, Alan A. Galuska
  • Publication number: 20210070702
    Abstract: Compositions comprising a sulfonated reaction product or a salt thereof may be prepared from a cyclohexylbenzene compound that has been alkylated with an olefin of formula R1R2CCH2, wherein R1 is a C6-C24 hydrocarbyl group, and R2 is H or a C6-C24 hydrocarbyl group. Methods for sulfonating an alkylated cyclohexylbenzene compound prepared from a cyclohexylbenzene compound that has been alkylated with an olefin of formula R1R2CCH2, wherein R1 is a C6-C24 hydrocarbyl group, and R2 is H or a C6-C24 hydrocarbyl group may comprise contacting the alkylated cyclohexylbenzene compound with a sulfonating reagent; forming a sulfonated reaction product; and converting the sulfonated reaction product into a sulfonate salt.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 11, 2021
    Inventors: Abhimanyu O. Patil, Satish Bodige, Arben Jusufi, Shane Deighton, Kanmi Mao, Alan A. Galuska
  • Publication number: 20200377450
    Abstract: The present disclosure relates to surfactants formed from sulfonation of aromatic ethers. The example surfactant composition may include a sulfonated aromatic ether. The sulfonated aromatic ether may include an aromatic ring with substituents comprising an ether group and a sulfonic acid group or a salt of the sulfonic acid group. The ether group may be represented by the following formula: wherein R1 is a linear or branched alkyl group having from 1 carbon atom to 20 carbon atoms; wherein each R2 is individually a hydrogen or an alkyl group having from 1 carbon atom to 4 carbon atoms; and wherein n is a value from 0 to 8.
    Type: Application
    Filed: April 27, 2020
    Publication date: December 3, 2020
    Inventors: Abhimanyu O. Patil, Satish Bodige, Aruna Mohan, Arben Jusufi, Kanmi Mao
  • Patent number: 10807875
    Abstract: The zeolite UTD-1 may be formed under hydrothermal synthesis conditions using a directing agent that does not include a metal atom therein. Methods for synthesizing the zeolite UTD-1 may comprise: combining at least a silicon atom source and a directing agent having a structure of in an aqueous medium; forming the zeolite in the aqueous medium under hydrothermal synthesis conditions, such that the zeolite has a framework silicate with a cationic portion of the directing agent occluded within pores or channels of the framework silicate; and isolating the zeolite from the aqueous medium. The zeolite has a powder x-ray diffraction pattern with at least the following 2?scattering angles: 6.0±0.12, 7.6±0.1, 14.66±0.15, 19.7±0.15, 21.27±0.15, 22.13±0.15, 22.61±0.15, and 24.42±0.10 for a borosilicate form zeolite, or 6.0±0.12, 7.6±0.15, 14.55±0.15, 19.64±0.15, 21.01±0.20, 21.90±0.20, 22.34±0.20, and 24.38±0.20 for an aluminosilicate form zeolite.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: October 20, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Allen W. Burton, Hilda B. Vroman, Joseph M. Falkowski, Eugene Terefenko, Kanmi Mao
  • Publication number: 20200109058
    Abstract: The zeolite UTD-1 may be formed under hydrothermal synthesis conditions using a directing agent that does not include a metal atom therein. Methods for synthesizing the zeolite UTD-1 may comprise: combining at least a silicon atom source and a directing agent having a structure of in an aqueous medium; forming the zeolite in the aqueous medium under hydrothermal synthesis conditions, such that the zeolite has a framework silicate with a cationic portion of the directing agent occluded within pores or channels of the framework silicate; and isolating the zeolite from the aqueous medium. The zeolite has a powder x-ray diffraction pattern with at least the following 2?scattering angles: 6.0±0.12, 7.6±0.1, 14.66±0.15, 19.7±0.15, 21.27±0.15, 22.13±0.15, 22.61±0.15, and 24.42±0.10 for a borosilicate form zeolite, or 6.0±0.12, 7.6±0.15, 14.55±0.15, 19.64±0.15, 21.01±0.20, 21.90±0.20, 22.34±0.20, and 24.38 ±0.20 for an aluminosilicate form zeolite.
    Type: Application
    Filed: September 3, 2019
    Publication date: April 9, 2020
    Inventors: Allen W. Burton, Hilda B. Vroman, Joseph M. Falkowski, Eugene Terefenko, Kanmi Mao
  • Publication number: 20190300364
    Abstract: Sulfur-tolerant reforming catalysts that include bulk alumina in the catalyst support are provided. The sulfur-tolerant reforming catalysts can include a sulfur-tolerant catalytic metal to facilitate reforming. The catalyst can further include a support material that includes at least some alumina as bulk alumina and/or octahedrally coordinated alumina. The sulfur-tolerant reforming catalysts can be regenerated, such as periodically regenerated, under relatively mild conditions that allow the catalysts to maintain reforming activity in the presence of 1 vppm to 1000 vppm of sulfur in the feed for reforming.
    Type: Application
    Filed: March 7, 2019
    Publication date: October 3, 2019
    Inventors: Brian M. WEISS, Tilman W. BEUTEL, Herbert W. BARRY, Gerardo J. MAJANO SANCHEZ, John F. BRODY, Walter WEISSMAN, Kanmi MAO
  • Publication number: 20190144774
    Abstract: Methods are provided for modifying hydrogenation catalysts having silica supports (or other non-alumina supports) with additional alumina, and using such catalysts to achieve unexpectedly superior hydrogenation of feedstocks. The modified hydrogenation catalysts can have a relatively low cracking activity while providing an increased activity for hydrogenation.
    Type: Application
    Filed: January 8, 2019
    Publication date: May 16, 2019
    Inventors: Michael P. LANCI, Stuart L. SOLED, Javier GUZMAN, Sabato MISEO, Thomas E. GREEN, Joseph E. BAUMGARTNER, Lei ZHANG, Christine E. KLIEWER, Lukasz KOZIOL, Kanmi MAO, Tracie OWENS, Gary P. SCHLEICHER
  • Patent number: 10227539
    Abstract: Methods are provided for modifying hydrogenation catalysts having silica supports (or other non-alumina supports) with additional alumina, and using such catalysts to achieve unexpectedly superior hydrogenation of feedstocks. The modified hydrogenation catalysts can have a relatively low cracking activity while providing an increased activity for hydrogenation.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 12, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Stuart L. Soled, Javier Guzman, Sabato Miseo, Thomas E. Green, Joseph E. Baumgartner, Lei Zhang, Christine E. Kliewer, Lukasz Koziol, Kanmi Mao, Tracie L. Owens, Gary P. Schleicher
  • Patent number: 10227535
    Abstract: Methods are provided for modifying hydrogenation catalysts having silica supports (or other non-alumina supports) with additional alumina, and using such catalysts to achieve unexpectedly superior hydrogenation of feedstocks. The modified hydrogenation catalysts can have a relatively low cracking activity while providing an increased activity for hydrogenation.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 12, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael P. Lanci, Stuart L. Soled, Javier Guzman, Sabato Miseo, Thomas E. Green, Joseph E. Baumgartner, Lei Zhang, Christine E. Kliewer, Lukasz Koziol, Kanmi Mao, Tracie L. Owens, Gary P. Schleicher, Xiaochun Xu
  • Patent number: 10207249
    Abstract: Organosilica materials, which are a polymer of at least one independent monomer of Formula [Z1OZ2OSiCH2]3 (I), wherein Z1 and Z2 each independently represent a hydrogen atom, a C1-C4 alkyl group or a bond to a silicon atom of another monomer and at least one other monomer is provided herein. Methods of preparing and processes of using the organosilica materials, e.g., for gas separation, color removal etc., are also provided herein.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: February 19, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Quanchang Li, Preeti Kamakoti, David Charles Calabro, Mary Kathryn Lee, Stephen M. Cundy, Kanmi Mao, Matu J. Shah, Dennis George Peiffer, Daniel P. Leta
  • Patent number: 9919288
    Abstract: Adsorbent materials comprising a ZIF material and cross-linked polymer are provided herein. Methods of separating organic compounds from an aqueous solution or a non-aqueous solution and biofuel production processes using the adsorbent material are also provided herein.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: March 20, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Yi Du, Kanmi Mao, Bradley Wooler, Arun K. Sharma, Doug F. Colmyer, Frank C. Wang, Simon C. Weston
  • Publication number: 20160367962
    Abstract: Adsorbent materials comprising a ZIF material and cross-linked polymer are provided herein. Methods of separating organic compounds from an aqueous solution or a non-aqueous solution and biofuel production processes using the adsorbent material are also provided herein.
    Type: Application
    Filed: June 7, 2016
    Publication date: December 22, 2016
    Inventors: Yi Du, Kanmi Mao, Bradley Wooler, Arun K. Sharma, Doug F. Colmyer, Frank C. Wang, Simon C. Weston