Patents by Inventor Kaoru Fukuda

Kaoru Fukuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060287194
    Abstract: An electrode for a solid polymer fuel cell, capable of enhancing the power generation efficiency without increasing the amount of catalyst carried on the carbon particles, is provided. Catalyst carrier particles having a catalyst substance 10 carried on the surface of electron conductive particles 1, and a polymer electrolyte containing catalyst having a catalyst substance 20 dispersed in an ion conductive polymer 2 coexist.
    Type: Application
    Filed: August 24, 2006
    Publication date: December 21, 2006
    Inventors: Kaoru Fukuda, Tadahiro Shiba, Yuichiro Sugiyama, Shinya Watanabe
  • Patent number: 7056615
    Abstract: In an electrode for polymer electrolyte fuel cells comprising electron conducting particles carrying platinum and an ion conducting polymer, platinum particles formed by a microemulsion method are added in a range of from 5 to 20% of the total amount of platinum in the electrode. A manufacturing method therefor is also provided.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: June 6, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kaoru Fukuda, Yuichiro Sugiyama, Shinya Watanabe, Chikara Iwasawa, Tadahiro Shiba
  • Publication number: 20060099487
    Abstract: A membrane electrode assembly for solid polymer electrolyte fuel cell includes an anode electrode, a cathode electrode, and a polymer electrolyte membrane sandwiched by these electrodes, the catalyst layer of cathode electrode contains a Pt—Co catalyst that is Pt—Co alloys supported by an electrical conductive material, and crystalline carbon fibers, improving the catalyst activity and controlling the oxidization corrosion reaction of the catalyst carrier can be carried out, and providing a high initial performance and superior durability.
    Type: Application
    Filed: October 31, 2005
    Publication date: May 11, 2006
    Inventors: Kaoru Fukuda, Ryoichiro Takahashi, Junji Matsuo
  • Patent number: 7041402
    Abstract: A solid polymer electrolyte fuel cell has a fuel electrode and an oxidant electrode, which face each other via a solid polymer electrolyte membrane. A metallic complex is added to the fuel electrode of the solid polymer electrolyte fuel cell. Since this metallic complex adsorbs oxygen as the oxygen partial pressure at the fuel electrode increases and desorbs oxygen as the oxygen partial pressure decreases, oxygen produced when a reverse voltage is generated can be removed efficiently. It may be possible to prevent the deterioration of or damage to a catalyst material of the fuel cell and the electrolyte membrane.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: May 9, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kaoru Fukuda, Masaki Tani, Keisuke Andou, Chikara Iwasawa
  • Publication number: 20060093893
    Abstract: A membrane electrode assembly for a solid polymer electrolyte fuel cell includes an anode electrode, a cathode electrode, and a polymer electrolyte membrane sandwiched by the electrodes, the catalyst layer of the cathode electrode containing a catalyst supporting particle in which a precious metal is supported on heat-treated carbon black or activated carbon, an ion conductive material, and a crystalline carbon fiber. Heat treatment is preferably applied at 2,500 to 3,000° C. (degrees Celsius). The membrane electrode assembly provides superior power generation performance.
    Type: Application
    Filed: November 1, 2005
    Publication date: May 4, 2006
    Inventors: Junji Matsuo, Kaoru Fukuda
  • Patent number: 7022426
    Abstract: A solid polymer fuel cell includes an electrolyte membrane having a polymer ion-exchange component, and an air electrode and a fuel electrode between which the electrolyte membrane is sandwiched. Each of the air electrode and the fuel electrode can be formed of a polymer ion-exchange component and a plurality of catalyst particles including a catalyst metal carried on surfaces of carbon black particles, and includes no third component. When a moistening for maintaining the electrolyte membrane in a wet state is carried out from both of the side of the air electrode and the side of the fuel electrode, the carbon black particles have a water-repellent property such that an amount A of water adsorbed under a saturated steam pressure at 60° C. is equal to or smaller than 80 cc/g, and a ratio Wp/Wc of a weight Wp of polymer ion-exchange component incorporated to a weight Wc of carbon black particles incorporated is set in a range of 0.4?Wp/Wc?1.25.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: April 4, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kaoru Fukuda, Keisuke Andou, Nobuhiro Saito, Masaaki Nanaumi, Junji Matsuo
  • Publication number: 20060068269
    Abstract: A water holding layer having a carbon-based material and a water holding material is arranged on an anode diffusion layer. The water holding material is contained at 5 to 20 wt % of total weight of the water holding material and an electron conductive material. Alternatively, carbon particles having water absorption amount at saturated water vapor pressure at 60° C. is not less than 150 cc/g are contained in the anode diffusion layer. Water absorption ratio of the anode diffusion layer at 60° C. is in a range of 40 to 85%, a differential pressure is in a range of 60 to 120 mmaq, and a ratio of quantity of electric charge of catalytic material of the cathode catalytic layer existing in proton conductive passage from the polymer electrolyte membrane is not less than 15% of the quantity of electric charge of all the catalytic material existing in the cathode catalytic layer. Furthermore, a layer including carbon particles having water absorption amount at saturated water vapor pressure at 60° C.
    Type: Application
    Filed: October 21, 2003
    Publication date: March 30, 2006
    Inventors: Kaoru Fukuda, Masaki Tani, Hayato Kaji, Shigeru Inai, Takeshi Muro, Shinya Watanabe
  • Publication number: 20060019147
    Abstract: A solid polymer electrolyte fuel cell comprises: a plurality of electrode structures comprising an anode and a cathode, and polymer electrolyte membrane held between the anode and the cathode, and a plurality of separators for holding the respective electrode structures, with a fuel gas passage for supplying and discharging fuel gas containing hydrogen on a surface opposing the anode; and an oxidant gas passage for supplying and discharging oxidant gas on a surface opposing the cathode. The catalyst layer of the anode comprises a mixture of an ion conductive material, a platinum powder and/or platinum alloy powder and a carbon, the platium powder and/or platinum alloy powder and carbon substantially exist independently from each other, and the catalyst layer of the cathode comproses a metal support mixture in which the ion conductive material and the electro-conductive material having the supported catalyst material are mixed.
    Type: Application
    Filed: July 14, 2005
    Publication date: January 26, 2006
    Applicants: HONDA MOTOR CO., LTD., TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kaoru Fukuda, Ryoichiro Takahashi, Junji Matsuo, Tomoyuki Tada, Masahiko Inoue, Koichi Matsutani
  • Publication number: 20050227138
    Abstract: A polymer electrolyte fuel cell consists of plural units, and the unit has an anode side separator, an anode diffusion layer, an anode catalytic layer, polymer electrolyte membrane, a cathode catalytic layer, a cathode diffusion layer, and a cathode side separator. The cathode catalytic layer further includes a catalyst in which platinum or platinum alloy is supported on a carbon supporting body having an average lattice space d002 of [002] surface of 0.338 to 0.355 nm and specific surface area of the supporting body of 80 to 250 m2/g, electrolyte containing ion exchange resin, and vapor grown carbon fiber. Furthermore, a water holding layer containing ion exchange resin, carbon particles, and vapor grown carbon fiber is arranged at an interface of the cathode diffusion layer and the cathode catalytic layer.
    Type: Application
    Filed: April 5, 2005
    Publication date: October 13, 2005
    Inventors: Kaoru Fukuda, Taku Eguchi, Makoto Tsuji
  • Publication number: 20050175886
    Abstract: An active solid polymer electrolyte membrane provides an enhancement in power-generating performance. The active solid polymer electrolyte membrane in a solid polymer electrolyte fuel cell includes a solid polymer electrolyte element, and a plurality of noble metal catalyst grains which are carried by an ion exchange in a surface layer located inside a surface of the solid polymer electrolyte element and which are dispersed uniformly in the entire surface layer. The surface layer has a thickness t2 equal to or smaller than 10 ?m. An amount CA of noble metal catalyst grains carried is in a range of 0.02 mg/cm2?CA<0.14 mg/cm2.
    Type: Application
    Filed: March 2, 2005
    Publication date: August 11, 2005
    Inventors: Kaoru Fukuda, Nobuhiro Saito, Kazuhide Terada
  • Patent number: 6875537
    Abstract: A membrane electrode assembly for polymer electrolyte fuel cells comprises a cathode electrode, an anode electrode, and a polymer electrolyte membrane placed between these electrodes, and a catalyst material of Pt—Ru alloy is contained in the anode and the crystal of Pt—Ru alloy is mainly of a face-centered cubic structure.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: April 5, 2005
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Masaki Tani, Kaoru Fukuda, Chikara Iwasawa, Shigeru Inai
  • Patent number: 6847518
    Abstract: A membrane electrode assembly for a polymer electrolyte fuel cell has a polymer electrolyte membrane, an anode, and a cathode having a catalytic layer and a diffusion layer. The alloy catalyst contains ruthenium in the anode diffusion layer. The assembly has less loss of efficiency, particularly when operated at high potentials.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: January 25, 2005
    Assignees: Honda Motor Co., Ltd., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Kaoru Fukuda, Masaki Tani, Hayato Kaji, Shigeru Inai, Takeshi Muro, Shinya Watanabe, Tomoyuki Tada, Masahiko Inoue
  • Patent number: 6844097
    Abstract: A solid polymer fuel cell (1) has an electrolyte membrane (2), and an air electrode (3) and a fuel electrode (4) that closely contact to opposite sides of the electrolyte membrane (2) respectively. The electrolyte membrane (2) has a membrane core (9) comprising a polymer ion-exchange component, and a plurality of phyllosilicate particles (10) that disperse in the membrane core (9) and are subjected to ion-exchange processing between metal ions and protons, and proton conductance Pc satisfies Pc>0.05 S/cm. Owing to this, it is possible to provide the solid polymer fuel cell equipped with the electrolyte membrane (2) that has excellent high-temperature strength and can improve power-generating performance.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: January 18, 2005
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kaoru Fukuda, Yoichi Asano, Nagayuki Kanaoka, Nobuhiro Saito, Masaaki Nanaumi
  • Publication number: 20040219419
    Abstract: A membrane electrode assembly for polymer electrolyte fuel cells comprises a cathode electrode, an anode electrode, and a polymer electrolyte membrane placed between these electrodes, and a catalyst material of Pt—Ru alloy is contained in the anode and the crystal of Pt—Ru alloy is mainly of a face-centered cubic structure.
    Type: Application
    Filed: December 9, 2002
    Publication date: November 4, 2004
    Applicant: HONDA GIKEN KOGYO KABUSHIKI KAISHA
    Inventors: Masaki Tani, Kaoru Fukuda, Chikara Iwasawa, Shigeru Inai
  • Publication number: 20040166399
    Abstract: The invention provides an electrode paste composition that enables a sufficient pore volume of electrode for high generating performance while maintaining good storage stability. The paste composition comprises a carbon black supporting a hydrogen reduction catalyst, an electrolyte, an organic solvent having a boiling point of 100 to 200° C., a water-soluble organic solvent having a boiling point of less than 100° C., and optionally one or more components selected from a dispersant, a carbon fiber and water.
    Type: Application
    Filed: February 12, 2004
    Publication date: August 26, 2004
    Applicants: JSR CORPORATION, HONDA MOTOR CO., LTD.
    Inventors: Makoto Higami, Junji Kawai, Kaoru Fukuda, Junji Matsuo, Ryoichiro Takahashi, Yuichiro Hama
  • Publication number: 20040136143
    Abstract: A membrane electrode assembly for a polymer electrolyte fuel cell has a polymer electrolyte membrane, an anode, and a cathode having a catalytic layer and a diffusion layer. The alloy catalyst contains ruthenium in the anode diffusion layer. The assembly has less loss of efficiency, particularly when operated at high potentials.
    Type: Application
    Filed: December 2, 2003
    Publication date: July 15, 2004
    Inventors: Kaoru Fukuda, Masaki Tani, Hayato Kaji, Shigeru Inai, Takeshi Muro, Shinya Watanabe, Tomoyuki Tada, Masahiko Inoue
  • Publication number: 20040121211
    Abstract: The present invention provides a polymer electrolyte fuel cell, which is inexpensive and has an excellent efficiency of generating electric power, by using a material alternative to a perfluoroalkylene sulfonic acid polymer. The polymer electrolyte fuel cell comprises a pair of electrodes (2, 3) consisting of an oxygen electrode (2) and a fuel electrode (3) both having a catalyst layer (5) containing a catalyst and an ion conducting material; and a polymer electrolyte membrane (1) sandwiched between the two catalyst layers (5) of the both electrodes (2, 3).
    Type: Application
    Filed: September 30, 2003
    Publication date: June 24, 2004
    Inventors: Yoichi Asano, Masaaki Nanaumi, Hiroshi Sohma, Nagayuki Kanaoka, Nobuhiro Saito, Keisuke Andou, Kaoru Fukuda, Junji Matsuo
  • Publication number: 20040115517
    Abstract: An electrode for a solid polymer fuel cell includes a gas diffusion layer, an electrode catalyst layer disposed between a solid polymer membrane of the fuel cell and the gas diffusion layer, and a water-holding layer disposed between the gas diffusion layer and the electrode catalyst layer. Under high-relative humidity conditions of reaction gases, flooding can be prevented because the electrode catalyst layer is made porous, while under low-relative humidity conditions of reaction gases, sufficient water contents can be stably provided thanks to the water-holding layer so that proton conductivity of the solid polymer membrane can be maintained appropriately. Consequently, high-performance and high-durability electrode and membrane electrode assembly for a solid polymer fuel cell can be provided such that the performance and the durability thereof are not affected by change in relative humidity in reactant gases supplied to the solid polymer fuel cell.
    Type: Application
    Filed: November 7, 2003
    Publication date: June 17, 2004
    Inventors: Kaoru Fukuda, Masaki Tani, Shigeru Inai, Hayato Kaji, Chikara Iwasawa, Shinya Watanabe, Katsuhiko Kohyama, Hiroshi Shinkai, Takeshi Muro
  • Publication number: 20040115502
    Abstract: A membrane-electrode structure capable of exhibiting excellent electric power generation performance even in a high current region and a polymer electrolyte fuel cell using the membrane-electrode structure are provided. Additionally, electric appliances and transport machines each using the above-described polymer electrolyte fuel cell are provided. The membrane-electrode structure comprises an anode electrode 2a, a cathode electrode 2b and a polymer electrolyte membrane 3 made of a sulfonated polyarylene based polymer and held between both electrodes 2a, 2b. The cathode electrode 2b comprises an electrode catalyst layer 4b containing a catalyst particle having the catalyst loaded on the carbon particles, a pore forming member and an ion conducting polymer falling within the weight ratio range from 1.0 to 1.8 in relation to said carbon particles, and is in contact with the polymer electrolyte membrane 3 through the electrode catalyst layer 4b.
    Type: Application
    Filed: November 25, 2003
    Publication date: June 17, 2004
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Kaoru Fukuda, Ichiro Tanaka, Masaki Tani, Junji Matsuo
  • Patent number: 6720106
    Abstract: An membrane electrode assembly for a fuel cell composed of a pair of electrode catalyst layers and an electrolyte membrane sandwiched between the electrode catalyst layers is configured so that the catalyst of at least one surface of the electrode catalyst layers enters in the electrolyte membrane whereby the electrode catalyst layer and the electrolyte membrane are unified with each other. In this configuration, no exfoliation occurs at the interface between the electrode catalyst layer and the electrolyte membrane, and the durability of the membrane electrode assembly can be increased even during the course of heat cycles.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: April 13, 2004
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kaoru Fukuda, Masaaki Nanaumi, Nobuhiro Saito, Yoichi Asano, Nagayuki Kanaoka