Patents by Inventor Kaoru Miura

Kaoru Miura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160315245
    Abstract: The present invention provides a lead-free piezoelectric material having a high piezoelectric constant over a wide operating temperature region. Therefore, the present invention relates to a piezoelectric material including a perovskite-type metal oxide represented by general formula (1) below as a main component, wherein the average valence, of Sn contained in the general formula (1) lies between 2 and 4. (BavCawSnxTiyZrz)O3 (where 0.620?v?0.970, 0.010?w?0.200, 0.030?x?0.230, 0.865?y?0.990, 0?z?0.085, and 1.986?v+w+x+y+z?2.
    Type: Application
    Filed: December 11, 2014
    Publication date: October 27, 2016
    Inventors: Makoto Kubota, Hisato Yabuta, Shunsuke Murakami, Kaoru Miura, Kanako Oshima
  • Patent number: 9240542
    Abstract: There is provided a piezoelectric ceramic having a high and stable piezoelectric constant and a high and stable mechanical quality factor in a wide operating temperature range, and a piezoelectric element according to the present invention includes a main component containing a perovskite type metal oxide having the following general formula (1) or (2); and Mn as a first auxiliary component, (Ba1-xCax)a(Ti1-y-zSnyZrz)O3??(1) (0.08?x?0.20, 0.01?y?0.04, 0<z?0.04) (Ba1-xCax)a(Ti1-ySny)O3??(2) (0.08?x?0.20, 0.01?y?0.04) wherein the amount b (mol) of Mn per mole of the metal oxide is in the range of 0.0048?b?0.0400, and the value a of the general formula (1) or (2) is in the range of 0.9925+b?a?1.0025+b.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: January 19, 2016
    Assignee: Canon Kabushiki Kiasha
    Inventors: Hiroshi Saito, Kanako Oshima, Kaoru Miura, Hisato Yabuta, Jumpei Hayashi
  • Patent number: 9082975
    Abstract: Provided is a Bi-based piezoelectric material having good piezoelectric properties. The piezoelectric material includes a perovskite-type metal oxide represented by the following general formula (1): Ax(ZnjTi(1-j))l(MgkTi(1-k))mMnO3??General formula (1) where: A represents a Bi element, or one or more kinds of elements selected from the group consisting of trivalent metal elements and containing at least a Bi element; M represents at least one kind of an element selected from the group consisting of Fe, Al, Sc, Mn, Y, Ga, and Yb; and 0.9?x?1.25, 0.4?j?0.6, 0.4?k?0.6, 0.09?l?0.49, 0.19?m?0.64, 0.13?n?0.48, and l+m+n=1 are satisfied.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: July 14, 2015
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology, Sophia School Corporation
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Takayuki Watanabe, Jumpei Hayashi, Hiroshi Funakubo, Tomoaki Yamada, Shintaro Yasui, Keisuke Yazawa, Hiroshi Uchida, Jun-ichi Nagata
  • Patent number: 9022531
    Abstract: The piezoelectric element includes, on a substrate: a piezoelectric film; and a pair of electrodes provided in contact with the piezoelectric film; in which the piezoelectric film contains a perovskite-type metal oxide represented by the general formula (1) as a main component: Ax(ZnjTi(1-j))l(MgkTi(1-k))mMnO3??General Formula (1) wherein the perovskite-type metal oxide is uniaxially (111)-oriented in pseudo-cubic notation in a thickness direction, of the pair of electrodes, a lower electrode provided on the substrate side is a multilayer electrode including at least a first electrode layer in contact with the substrate and a second electrode layer in contact with the piezoelectric film, and the second electrode layer is a perovskite-type metal oxide electrode which is uniaxially (111)-oriented in pseudo-cubic notation in a thickness direction.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: May 5, 2015
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology, Sophia School Corporation
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Takayuki Watanabe, Jumpei Hayashi, Hiroshi Funakubo, Shintaro Yasui, Takahiro Oikawa, Jun-ichi Nagata, Hiroshi Uchida
  • Patent number: 8981626
    Abstract: A piezoelectric material contains a perovskite oxynitride expressed by the General Formula: (Ba1-xSrx)(Ti1-3z(Nb1-yTay)3z)(O1-wNw)3. In the formula, x, y, z and w are numerical values satisfying the relationships: 0?x?1, 0?y?1, 0<z<<?, and 0<w?z. Also, z can be 0.1?z?0.2. The piezoelectric material may be in the form of a film having a thickness in the range of 200 nm to 10 ?m that is disposed on a substrate. The perovskite oxynitride may have a tetragonal crystal structure.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: March 17, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kaoru Miura, Makoto Kubota, Jumpei Hayashi, Takayuki Watanabe
  • Patent number: 8974729
    Abstract: Provided are resin-based and metal-based anti-thermally-expansive members each having small thermal expansion. More specifically, provided are an anti-thermally-expansive resin and an anti-thermally-expansive metal, each including a resin or a metal having a positive linear expansion coefficient at 20° C. and a solid particle dispersed in the resin or metal, in which the solid particle includes at least an oxide represented by the following general formula (1): (Bi1-xMx)NiO3 (1), where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: March 10, 2015
    Assignees: Canon Kabushiki Kaisha, Kyoto University
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Publication number: 20140234643
    Abstract: Provided are a thermal expansion suppressing member having negative thermal expansion properties and a metal-based anti-thermally-expansive member having small thermal expansion. More specifically, provided are a thermal expansion suppressing member, including at least an oxide represented by the following general formula (1), and an anti-thermally-expansive member, including a metal having a positive linear expansion coefficient at 20° C., and a solid body including at least an oxide represented by the following general formula (1), the metal and solid being joined to each other: (Bi1-xMx)NiO3 (1) where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Application
    Filed: April 25, 2014
    Publication date: August 21, 2014
    Applicants: KYOTO UNIVERSITY, CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Patent number: 8753749
    Abstract: Provided are a thermal expansion suppressing member having negative thermal expansion properties and a metal-based anti-thermally-expansive member having small thermal expansion. More specifically, provided are a thermal expansion suppressing member, including at least an oxide represented by the following general formula (1), and an anti-thermally-expansive member, including a metal having a positive linear expansion coefficient at 20° C., and a solid body including at least an oxide represented by the following general formula (1), the metal and solid being joined to each other: (Bi1-xMx)NiO3 (1) where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: June 17, 2014
    Assignees: Canon Kabushiki Kaisha, Kyoto University
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Publication number: 20140134038
    Abstract: Provided are resin-based and metal-based anti-thermally-expansive members each having small thermal expansion. More specifically, provided are an anti-thermally-expansive resin and an anti-thermally-expansive metal, each including a resin or a metal having a positive linear expansion coefficient at 20° C. and a solid particle dispersed in the resin or metal, in which the solid particle includes at least an oxide represented by the following general formula (1): (Bi1-xMx)NiO3 (1), where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 15, 2014
    Applicants: KYOTO UNIVERSITY, CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Patent number: 8678562
    Abstract: Provided is a piezoelectric material including a bismuth barium niobium oxide-based tungsten bronze structure metal oxide having a high Curie temperature and being excellent in piezoelectric property. The piezoelectric material includes a metal oxide having a tungsten bronze structure represented by the following general formula (1), in which the metal oxide having a tungsten bronze structure includes Li, and a content of the Li is 0.015 weight percent or more and 0.600 weight percent or less in terms of metal with respect to 100 parts by weight of the metal oxide: AxB10O30??(1) where A represents Ba and Bi, or at least one kind or more of elements selected from the group consisting of: Na, Sr, and Ca in addition to Ba and Bi; B represents Nb, or Nb and Ta; and x represents a numerical value of 4.5<x<5.5.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: March 25, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jumpei Hayashi, Takayuki Watanabe, Takanori Matsuda, Kaoru Miura, Makoto Kubota
  • Patent number: 8664316
    Abstract: Provided are resin-based and metal-based anti-thermally-expansive members each having small thermal expansion. More specifically, provided are an anti-thermally-expansive resin and an anti-thermally-expansive metal, each including a resin or a metal having a positive linear expansion coefficient at 20° C. and a solid particle dispersed in the resin or metal, in which the solid particle includes at least an oxide represented by the following general formula (1): (Bi1-xMx)NiO3??(1), where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: March 4, 2014
    Assignees: Canon Kabushiki Kaisha, Kyoto University
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Publication number: 20130330541
    Abstract: Provided is a piezoelectric material excellent in piezoelectricity. The piezoelectric material includes a perovskite-type complex oxide represented by the following General Formula (1). A(ZnxTi(1-x))yM(1-y)O3??(1) wherein A represents at least one kind of element containing at least a Bi element and selected from a trivalent metal element; M represents at least one kind of element of Fe, Al, Sc, Mn, Y, Ga, and Yb; x represents a numerical value satisfying 0.4?x?0.6; and y represents a numerical value satisfying 0.1?y?0.9.
    Type: Application
    Filed: August 5, 2013
    Publication date: December 12, 2013
    Applicants: CANON KABUSHIKI KAISHA, KYOTO UNIVERSITY, TOKYO INSTITUTE OF TECHNOLOGY, TOKYO UNIVERSITY OF SCIENCE EDUCATIONAL FOUNDATION ADMINISTRATIVE ORGANIZATION, UNIVERSITY OF YAMANASHI, NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCES AND TECHNOLOGY, SOPHIA UNIVERSITY
    Inventors: Makoto Kubota, Kaoru Miura, Toshihiro Ifuku, Jumpei Hayashi, Masaki Azuma, Olga Alexandrovna Smirnova, Hiroshi Funakubo, Hiroshi Uchida, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Publication number: 20130278681
    Abstract: There is provided a lead-free piezoelectric ceramic having a high and stable piezoelectric constant and a high and stable mechanical quality factor in a wide operating temperature range. A method for manufacturing the lead-free piezoelectric ceramic is also provided. the general formula (1) (Ba1-xCax)a(Ti1-y-zSnyZrz)O3 (0.08?x?0.20, 0.01?y?0.04, 0?z?0.04)??(1) A piezoelectric ceramic includes a main component containing a perovskite type metal oxide having the following general formula (1); and Mn as a first auxiliary component. The amount b (mol) of Mn per mole of the metal oxide is in the range of 0.0048?b?0.0400, and the value a of the general formula (1) or (2) is in the range of 0.9925+b?a?1.0025+b.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 24, 2013
    Inventors: Hiroshi Saito, Kanako Oshima, Kaoru Miura, Hisato Yabuta, Jumpei Hayashi
  • Patent number: 8529785
    Abstract: Provided is a piezoelectric material excellent in piezoelectricity. The piezoelectric material includes a perovskite-type complex oxide represented by the following General Formula (1). A(ZnxTi(1-x))yM(1-y)O3??(1) wherein A represents at least one kind of element containing at least a Bi element and selected from a trivalent metal element; M represents at least one kind of element of Fe, Al, Sc, Mn, Y, Ga, and Yb; x represents a numerical value satisfying 0.4?x?0.6; and y represents a numerical value satisfying 0.1?y?0.9.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: September 10, 2013
    Assignees: Canon Kabushiki Kaisha, Kyoto University, Tokyo Institute of Technology, Sophia University, University of Yamanashi, National Institute of Advanced Industrial Science and Technology, Tokyo University of Science Educational Foundation Administrative Organization
    Inventors: Makoto Kubota, Kaoru Miura, Toshihiro Ifuku, Jumpei Hayashi, Masaki Azuma, Olga Alexandrovna Smirnova, Hiroshi Funakubo, Hiroshi Uchida, Nobuhiro Kumada, Satoshi Wada, Takashi Iijima, Soichiro Okamura
  • Patent number: 8480918
    Abstract: The present invention provides a piezoelectric material which can be applied even to the MEMS technique, exhibits satisfactory piezoelectricity even at high ambient temperatures and is environmentally clean, namely, a piezoelectric material including an oxide obtained by forming a solid solution composed of two perovskite oxides A(1)B(1)O3 and A(2)B(2)O3 different from each other in crystalline phase, the oxide being represented by the following general formula (1): X{A(1)B(1)O3}?(1?X){A(2)B(2)O3}??(1) wherein “A(1)” and “A(2)” are each an element including an alkali earth metal and may be the same or different from each other; “B(1)” and “B(2)” each include two or more metal elements, and either one of “B(1)” and “B(2)” contains Cu in a content of 3 atm % or more; and “X” satisfies the relation 0<X<1.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: July 9, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kaoru Miura, Toshihiro Ifuku, Kenichi Takeda, Tetsuro Fukui, Hiroshi Funakubo
  • Publication number: 20130127298
    Abstract: Provided is a Bi-based piezoelectric material having good piezoelectric properties. The piezoelectric material includes a perovskite-type metal oxide represented by the following general formula (1): Ax(ZnjTi(1-j))l(MgkTi(1-k))mMnO3??General formula (1) where: A represents a Bi element, or one or more kinds of elements selected from the group consisting of trivalent metal elements and containing at least a Bi element; M represents at least one kind of an element selected from the group consisting of Fe, Al, Sc, Mn, Y, Ga, and Yb; and 0.9?x?1.25, 0.4?j?0.6, 0.4?k?0.6, 0.09?l?0.49, 0.19?m?0.64, 0.13?n?0.48, and l+m+n=1 are satisfied.
    Type: Application
    Filed: February 28, 2011
    Publication date: May 23, 2013
    Applicants: CANON KABUSHIKI KAISHA, SOPHIA SCHOOL CORPORATION, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Takayuki Watanabe, Jumpei Hayashi, Hiroshi Funakubo, Tomoaki Yamada, Shintaro Yasui, Keisuke Yazawa, Hiroshi Uchida, Jun-ichi Nagata
  • Patent number: 8356887
    Abstract: Provided are a piezoelectric element that can effectively utilize a piezoelectric constant d15 to increase a deflection displacement of a vibrating plate, and devices using the piezoelectric element. The piezoelectric element includes: a first electrode; a second electrode; a vibrating plate that is in contact with the first electrode; a piezoelectric film provided between the first electrode and the second electrode; at least one recess formed on the second electrode side of the piezoelectric film; and a third electrode formed on an inner side wall of the at least one recess, in which the third electrode is connected to the second electrode.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: January 22, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kaoru Miura, Tatsuo Furuta
  • Publication number: 20120162319
    Abstract: Provided is a piezoelectric material including a bismuth barium niobium oxide-based tungsten bronze structure metal oxide having a high Curie temperature and being excellent in piezoelectric property. The piezoelectric material includes a metal oxide having a tungsten bronze structure represented by the following general formula (1), in which the metal oxide having a tungsten bronze structure includes Li, and a content of the Li is 0.015 weight percent or more and 0.600 weight percent or less in terms of metal with respect to 100 parts by weight of the metal oxide: AxB100O30??(1) where A represents Ba and Bi, or at least one kind or more of elements selected from the group consisting of: Na, Sr, and Ca in addition to Ba and Bi; B represents Nb, or Nb and Ta; and x represents a numerical value of 4.5<x<5.5.
    Type: Application
    Filed: September 28, 2010
    Publication date: June 28, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Jumpei Hayashi, Takayuki Watanabe, Takanori Matsuda, Kaoru Miura, Makoto Kubota
  • Publication number: 20120040196
    Abstract: Provided are a thermal expansion suppressing member having negative thermal expansion properties and a metal-based anti-thermally-expansive member having small thermal expansion. More specifically, provided are a thermal expansion suppressing member, including at least an oxide represented by the following general formula (1), and an anti-thermally-expansive member, including a metal having a positive linear expansion coefficient at 20° C., and a solid body including at least an oxide represented by the following general formula (1), the metal and solid being joined to each other: (Bi1-xMx)NiO3 (1) where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 16, 2012
    Applicants: KYOTO UNIVERSITY, CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Publication number: 20120037842
    Abstract: Provided are resin-based and metal-based anti-thermally-expansive members each having small thermal expansion. More specifically, provided are an anti-thermally-expansive resin and an anti-thermally-expansive metal, each including a resin or a metal having a positive linear expansion coefficient at 20° C. and a solid particle dispersed in the resin or metal, in which the solid particle includes at least an oxide represented by the following general formula (1): (Bi1-xMx)NiO3 (1), where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 16, 2012
    Applicants: KYOTO UNIVERSITY, CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma