Patents by Inventor Karen Maurer

Karen Maurer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11922526
    Abstract: Aspects of distributed ledger technology are leveraged to verify subrogation settlements. In particular, two parties to a subrogation claim provide cryptographic hashes to a subrogation demand smart contract stored at an address on a blockchain. The subrogation demand smart contract determines that the parties have reached an agreement by determining that the cryptographic hashes match. A settlement amount from the subrogation claim may be appended to a set of settlement amounts to determine a net settlement amount to facilitate a single payment between the parties on a periodic basis, such as daily, to alleviate the need for the parties to send or receive a payment for each individual settlement amount.
    Type: Grant
    Filed: August 26, 2022
    Date of Patent: March 5, 2024
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Ryan Maurer, Nolan White, Kyle D. Weber, Edward Austin, William Guthrie, Dustin Helland, Bharat Prasad, Sharon Kay Haverlah, Karen Marie Shackelford-George
  • Publication number: 20160024713
    Abstract: A method for alteration of the morphology of cellulose fibers, particularly softwood fibers, by (a) subjecting the fibers to a metal ion-activated peroxide treatment carried out at a pH of between about 1 and about 9, preferably between 3 and 7, and (b) subjecting Use treated fibers to a refining treatment thereby converts SW fibers to HW-like fibers in many respects. The metal ion-activated peroxide treatment has been noted to act on pulp cellulose and hemi-cellulose, causing oxidation and oxidative degradation of cellulose fibers. The chemical treatment of the pulp, taken alone, is not sufficient to attain the desired modification of the morphology of the fibers however, subsequent refining or like mechanical treatment of the chemically-treated fibers to achieve a given degree of refinement of the fibers requires dramatically less refining energy to achieve a desired end point of refinement and to impart other desirable properties to the pulp.
    Type: Application
    Filed: October 5, 2015
    Publication date: January 28, 2016
    Inventors: ZHENG TAN, XUAN T. NGUYEN, KAREN MAURER
  • Publication number: 20140000825
    Abstract: A method for alteration of the morphology of cellulose fibers, particularly softwood fibers, by (a) subjecting the fibers to a metal ion-activated peroxide treatment carried out at a pH of between about 1 and about 9, preferably between 3 and 7, and (b) subjecting the treated fibers to a refining treatment thereby converts SW fibers to HW-like fibers in many respects. The metal ion-activated peroxide treatment has been noted to act on pulp cellulose and hemi-cellulose, causing oxidation and oxidative degradation of cellulose fibers. The chemical treatment of the pulp, taken alone, is not sufficient to attain the desired modification of the morphology of the fibers, however, subsequent refining or like mechanical treatment of the chemically-treated fibers to achieve a given degree of refinement of the fibers requires dramatically less refining energy to achieve a desired end point of refinement and to impart other desirable properties to the pulp.
    Type: Application
    Filed: September 4, 2013
    Publication date: January 2, 2014
    Applicant: INTERNATIONAL PAPER COMPANY
    Inventors: ZHENG TAN, XUAN T. NGUYEN, KAREN MAURER
  • Publication number: 20070119556
    Abstract: A method for alteration of the morphology of cellulose fibers, particularly softwood fibers, by (a) subjecting the fibers to a metal ion-activated peroxide treatment carried out at a pH of between about 1 and about 9, preferably between 3 and 7, and (b) subjecting the treated fibers to a refining treatment thereby converts SW fibers to HW-like fibers in many respects. The metal ion-activated peroxide treatment has been noted to act on pulp cellulose and hemi-cellulose, causing oxidation and oxidative degradation of cellulose fibers. The chemical treatment of the pulp, taken alone, is not sufficient to attain the desired modification of the morphology of the fibers, however, subsequent refining or like mechanical treatment of the chemically-treated fibers to achieve a given degree of refinement of the fibers requires dramatically less refining energy to achieve a desired end point of refinement and to impart other desirable properties to the pulp.
    Type: Application
    Filed: January 24, 2007
    Publication date: May 31, 2007
    Inventors: Zheng Tan, Xuan Nguyen, Karen Maurer
  • Publication number: 20050061455
    Abstract: A method for alteration of the morphology of cellulose fibers, particularly softwood fibers, by (a) subjecting the fibers to a metal ion-activated peroxide treatment carried out at a pH of between about 1 and about 9, preferably between 3 and 7, and (b) subjecting the treated fibers to a refining treatment thereby converts SW fibers to HW-like fibers in many respects. The metal ion-activated peroxide treatment has been noted to act on pulp cellulose and hemi-cellulose, causing oxidation and oxidative degradation of cellulose fibers. The chemical treatment of the pulp, taken alone, is not sufficient to attain the desired modification of the morphology of the fibers, however, subsequent refining or like mechanical treatment of the chemically-treated fibers to achieve a given degree of refinement of the fibers requires dramatically less refining energy to achieve a desired end point of refinement and to impart other desirable properties to the pulp.
    Type: Application
    Filed: September 23, 2003
    Publication date: March 24, 2005
    Inventors: Zheng Tan, Xuan Nguyen, Karen Maurer