Patents by Inventor Karin Shibata

Karin Shibata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11827967
    Abstract: A method for producing an aluminum alloy extruded material includes: subjecting, to extrusion processing, a casted billet obtained from an aluminum alloy containing 6.0 to 8.0% by mass of Zn, 1.50 to 3.50% by mass of Mg, 0.20 to 1.50% by mass of Cu, 0.10 to 0.25% by mass of Zr, 0.005 to 0.05% by mass of Ti, 0.3% by mass or less of Mn, 0.25% by mass or less of Sr, contents of Mn, Zr and Sr being 0.10 to 0.50% by mass, with the balance being Al and inevitable impurities to obtain an extruded material; cooling the extruded material, immediately after the extrusion processing, to 100° C. or less at a cooling rate of 50 to 750° C./min; then subjecting the extruded material to a heat treatment at 110 to 270° C. and subjecting the extruded material to plastic working within a prescribed time after the heat treatment.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: November 28, 2023
    Inventors: Karin Shibata, Tomoo Yoshida
  • Publication number: 20230357902
    Abstract: The method includes casting a billet of an aluminum alloy composition including, by mass: 6.0 to 8.0% of Zn, 1.5 to 3.0% of Mg, 0.20 to 1.50% of Cu, 0.10 to 0.25% of Zr, 0.005 to 0.05% of Ti, 0.15 to 0.35% of Mn, 0.25% or less of Sr, and 0.25 to 0.50% of a total of [Mn+Zr+Sr], and a balance including Al and unavoidable impurities, cooling the billet at a rate equal to or higher than a cooling rate of 50° C./hr after homogenization treatment at 480 to 520° C. for 1 to 14 hours, extruding an extruded material by using the billet subjected to the homogenization treatment so that a temperature of the extruded material directly after extruding becomes 325 to 550° C., cooling the extruded material at a rate of a cooling rate of 50 to 750° C./min directly after extruding, and applying two-stage artificial aging treatment.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 9, 2023
    Inventors: Karin SHIBATA, Hiroaki MATSUI
  • Publication number: 20230357889
    Abstract: The method for manufacturing an aluminum alloy extruded material using an aluminum alloy containing 20 to 95% by mass of a recycled aluminum material made by collecting and remelting extruded materials of aluminum alloys that are used or scrap materials generated in a manufacturing process, containing by mass: 6.0 to 8.0% of Zn, 1.0 to 2.0% of Mg, 0.10 to 0.50% of Cu, 0.10 to 0.25% of Zr, and 0.005 to 0.05% of Ti, with 0.30% or less of Si and 0.40% or less of Fe as impurities, and a balance being Al, includes cooling an extruded material at a cooling rate of 50 to 750° C./min from an extruded material temperature of 325 to 550° C. directly after extrusion, and thereafter performing two-stage artificial aging treatment at 90 to 130° C. for 1 to 8 hours and at 130 to 180° C. for 1 to 20 hours.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 9, 2023
    Inventors: Karin SHIBATA, Hiroaki MATSUI
  • Publication number: 20220364213
    Abstract: A method for producing an aluminum alloy extrusion includes: conducting extrusion processing using a casted billet of an aluminum alloy containing 6.0 to 7.0% by mass of Zn, 1.5 to 2.0% by mass of Mg, 0.20 to 1.50% by mass of Cu, 0.10 to 0.25% by mass of Zr, 0.005 to 0.05% by mass of Ti, 0.15 to 0.35% by mass of Mn, 0.25% by mass or less of Sr, content of Mn and Zr and Sr being 0.10 to 0.50% by mass, with the balance being Al and inevitable impurities to obtain an aluminum alloy extrusion; cooling the extrusion to 100° C. or less at a cooling rate of 50 to 750° C./min immediately after the extrusion processing; and then conducting an aging treatment which is performed in one-stage or two-stage and a heat treatment which is performed at higher temperature for a shorter time than the aging treatment.
    Type: Application
    Filed: August 1, 2022
    Publication date: November 17, 2022
    Inventors: Takahito KAWAMURA, Tomoo YOSHIDA, Karin SHIBATA
  • Patent number: 11136658
    Abstract: An aluminum alloy extruded material that exhibits high strength by air cooling immediately after extrusion processing and excellent stress corrosion cracking resistance, and a method for manufacturing the same are disclosed. The material includes, by mass: 6.0 to 8.0% of Zn, 1.50 to 2.70% of Mg, 0.20 to 1.50% of Cu, 0.005 to 0.05% of Ti, 0.10 to 0.25% of Zr, 0.3% or less of Mn, 0.05% or less of Cr, 0.25% or less of Sr, and 0.10 to 0.50% in total among Zr, Mn, Cr and Sr, with the balance being Al and unavoidable impurities.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: October 5, 2021
    Inventors: Karin Shibata, Tomoo Yoshida
  • Patent number: 10900108
    Abstract: A method for manufacturing a bent article using an aluminum alloy with high strength and excellent corrosion resistance comprises: extruding a cast billet of an aluminum alloy including, by mass, 6.0 to 8.0% Zn, 1.50 to 3.50% Mg, 0.20 to 1.50% Cu, 0.10 to 0.25% Zr, 0.005 to 0.05% Ti, 0.3% or less Mn, 0.25% or less Sr, and the balance Al with inevitable impurities to obtain an extruded material; cooling the extruded material at an average rate of 500° C./min or less immediately after the extrusion processing; subjecting the cooled extruded material to preliminary heating treatment at a temperature within a range of 140 to 260° C. for 30 to 120 seconds within a predetermined time after the extrusion processing; bending the extruded material having undergone the preliminary heating treatment to obtain a bent article; and subjecting the bent article to artificial aging treatment.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: January 26, 2021
    Assignee: AISIN KEIKINZOKU CO., LTD.
    Inventors: Tomoo Yoshida, Karin Shibata
  • Publication number: 20210010121
    Abstract: An aluminum alloy is provided that is used to produce a high-strength aluminum alloy extruded material that exhibits excellent formability. The aluminum alloy consists of 0.30 to 1.00 mass % of Mg, 0.6 to 1.40 mass % of Si, 0.10 to 0.40 mass % of Fe, 0.10 to 0.40 mass % of Cu, 0.005 to 0.1 mass % of Ti, 0.3 mass % or less of Mn, 0.01 to 2.0 mass % of Zn, and 0.10 mass % or less of Zr, with the balance being aluminum and unavoidable impurities, the aluminum alloy having a stoichiometric Mg2Si content of 0.60 to 1.30 mass % and an excess Si content of 0.30 to 1.00 mass %.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 14, 2021
    Inventor: Karin SHIBATA
  • Publication number: 20200270729
    Abstract: A method for producing an aluminum alloy extruded material includes: subjecting, to extrusion processing, a casted billet obtained from an aluminum alloy containing 6.0 to 8.0% by mass of Zn, 1.50 to 3.50% by mass of Mg, 0.20 to 1.50% by mass of Cu, 0.10 to 0.25% by mass of Zr, 0.005 to 0.05% by mass of Ti, 0.3% by mass or less of Mn, 0.25% by mass or less of Sr, contents of Mn, Zr and Sr being 0.10 to 0.50% by mass, with the balance being Al and inevitable impurities to obtain an extruded material; cooling the extruded material, immediately after the extrusion processing, to 100° C. or less at a cooling rate of 50 to 750° C./min; then subjecting the extruded material to a heat treatment at 110 to 270° C. and subjecting the extruded material to plastic working within a prescribed time after the heat treatment.
    Type: Application
    Filed: February 21, 2020
    Publication date: August 27, 2020
    Inventors: Karin Shibata, Tomoo Yoshida
  • Publication number: 20190360083
    Abstract: A method for producing a high-strength aluminum alloy extruded product includes casting a billet using an aluminum alloy containing, by mass %, 6.0 to 8.0% of Zn, 1.0 to 3.5% of Mg, 0.2 to 1.5% of Cu, 0.10 to 0.25% of Zr, 0.005 to 0.05% of Ti, and 0.5% or less of Mn, [Mn+Zr] being 0.10 to 0.60%, with the balance being Al and unavoidable impurities, homogenizing the billet and then extruding the homogenized billet without being cooled, cooling an extruded product immediately after the extrusion at an average rate of 70 to 500° C./min, and then performing artificial aging.
    Type: Application
    Filed: February 14, 2019
    Publication date: November 28, 2019
    Inventors: Tomoo YOSHIDA, Karin SHIBATA
  • Publication number: 20190264311
    Abstract: A method for manufacturing a bent article using an aluminum alloy with high strength and excellent corrosion resistance comprises: extruding a cast billet of an aluminum alloy including, by mass, 6.0 to 8.0% Zn, 1.50 to 3.50% Mg, 0.20 to 1.50% Cu, 0.10 to 0.25% Zr, 0.005 to 0.05% Ti, 0.3% or less Mn, 0.25% or less Sr, and the balance Al with inevitable impurities to obtain an extruded material; cooling the extruded material at an average rate of 500° C./min or less immediately after the extrusion processing; subjecting the cooled extruded material to preliminary heating treatment at a temperature within a range of 140 to 260° C. for 30 to 120 seconds within a predetermined time after the extrusion processing; bending the extruded material having undergone the preliminary heating treatment to obtain a bent article; and subjecting the bent article to artificial aging treatment.
    Type: Application
    Filed: August 13, 2018
    Publication date: August 29, 2019
    Inventors: Tomoo YOSHIDA, Karin SHIBATA
  • Publication number: 20190024224
    Abstract: An aluminum alloy extruded material that exhibits high strength by air cooling immediately after extrusion processing and excellent stress corrosion cracking resistance, and a method for manufacturing the same are disclosed. The material includes, by mass: 6.0 to 8.0% of Zn, 1.50 to 2.70% of Mg, 0.20 to 1.50% of Cu, 0.005 to 0.05% of Ti, 0.10 to 0.25% of Zr, 0.3% or less of Mn, 0.05% or less of Cr, 0.25% or less of Sr, and 0.10 to 0.50% in total among Zr, Mn, Cr and Sr, with the balance being Al and unavoidable impurities.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Inventors: Karin SHIBATA, Tomoo YOSHIDA
  • Publication number: 20160362771
    Abstract: An aluminum alloy extruded material exhibits excellent hardenability that ensures that high strength can be obtained by air-cooling immediately after extrusion and artificial aging, and exhibits excellent formability (e.g., press formability). An aluminum alloy includes 0.30 to 1.00 mass % of Mg, 0.6 to 1.40 mass % of Si, 0.10 to 0.40 mass % of Fe, 0.10 to 0.40 mass % of Cu, 0.005 to 0.1 mass % of Ti, and 0.3 mass % or less of Mn, with the balance being aluminum and unavoidable impurities, the aluminum alloy having a stoichiometric Mg2Si content of 0.60 to 1.30 mass % and an excess Si content of 0.30 to 1.00 mass %.
    Type: Application
    Filed: August 26, 2016
    Publication date: December 15, 2016
    Inventor: Karin SHIBATA
  • Publication number: 20140166165
    Abstract: An Al—Mg—Si-based high-strength aluminum alloy extruded shape exhibits excellent corrosion resistance and ductility, and exhibits excellent hardenability during extrusion (i.e., ensures high productivity). A method for producing the same is also disclosed. The high-strength aluminum alloy extruded shape includes 0.65 to 0.90 mass % of Mg, 0.60 to 0.90 mass % of Si, 0.20 to 0.40 mass % of Cu, 0.20 to 0.40 mass % of Fe, 0.10 to 0.20 mass % of Mn, and 0.005 to 0.1 mass % of Ti, with the balance being Al and unavoidable impurities, the aluminum alloy extruded shape having a stoichiometric Mg2Si content of 1.0 to 1.3 mass %, an excess Si content relative to stoichiometric Mg2Si of 0.10 to 0.30 mass %, and a total content of Fe and Mn of 0.35 mass % or more.
    Type: Application
    Filed: January 30, 2013
    Publication date: June 19, 2014
    Inventor: Karin Shibata
  • Patent number: 8168013
    Abstract: A method includes: preparing a molten aluminum alloy consisting of 0.3-0.8 mass % Mg, 0.5-1.2 mass % Si, 0.3 mass % or more excess Si relative to the Mg2Si stoichiometric composition, 0.05-0.4 mass % Cu, 0.2-0.4 mass % Mn, 0.1-0.3 mass % Cr, 0.2 mass % or less Fe, 0.2 mass % or less Zr, and 0.005-0.1 mass % Ti, with the balance being aluminum and unavoidable impurities; casting the alloy into a billet at a speed of 80 mm/min or more and a cooling rate of 15° C./sec or more; extruding the billet into an extruded product; water cooling the product immediately after extrusion at 500° C./min or more; and artificially aging the product, thereby yielding an extruded product with fatigue strength of 140 MPa or more, fatigue ratio of 0.45 or more, an interval between striations on a fatigue fracture surface of 5.0 ?m or less, and a maximum length of Al—Fe—Si crystallized products of 10 ?m or less.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: May 1, 2012
    Assignees: Aisin Keikinzoku Co., Ltd., Sumitomo Chemical Company, Limited
    Inventors: Karin Shibata, Tomoo Yoshida, Hiroshi Tabuchi, Hidetoshi Takagi
  • Publication number: 20120045359
    Abstract: A wear-resistant aluminum alloy extruded material that exhibits excellent fatigue strength and machinability is formed using an aluminum alloy that includes 3.0 to 8.0 mass % of Si, 0.1 to 0.5 mass % of Mg, 0.01 to 0.5 mass % of Cu, 0.1 to 0.5 mass % of Zr, 0.4 to 0.9 mass % of Fe, 0.01 to 0.5 mass % of Mn, 0.01 to 0.5 mass % of Cr, and 0.01 to 0.1 mass % of Ti, with the balance being Al and unavoidable impurities.
    Type: Application
    Filed: November 2, 2011
    Publication date: February 23, 2012
    Applicant: AISIN KEIKINZOKU CO., LTD.
    Inventor: Karin SHIBATA
  • Publication number: 20110240178
    Abstract: A method includes: preparing a molten aluminum alloy consisting of 0.3-0.8 mass % Mg, 0.5-1.2 mass % Si, 0.3 mass % or more excess Si relative to the Mg2Si stoichiometric composition, 0.05-0.4 mass % Cu, 0.2-0.4 mass % Mn, 0.1-0.3 mass % Cr, 0.2 mass % or less Fe, 0.2 mass % or less Zr, and 0.005-0.1 mass % Ti, with the balance being aluminum and unavoidable impurities; casting the alloy into a billet at a speed of 80 mm/min or more and a cooling rate of 15° C./sec or more; extruding the billet into an extruded product; water cooling the product immediately after extrusion at 500° C./sec or more; and artificially aging the product, thereby yielding an extruded product with fatigue strength of 140 MPa or more, fatigue ratio of 0.45 or more, an interval between striations on a fatigue fracture surface of 5.0 ?m or less, and a maximum length of Al—Fe—Si crystallized products of 10 ?m or less.
    Type: Application
    Filed: June 15, 2011
    Publication date: October 6, 2011
    Applicants: AISIN KEIKINZOKU CO., LTD., SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Karin SHIBATA, Tomoo YOSHIDA, Hiroshi TABUCHI, Hidetoshi TAKAGI
  • Publication number: 20100047114
    Abstract: An aluminum alloy extruded product includes 0.3 to 0.8 mass % of Mg, 0.5 to 1.2 mass % of Si, 0.3 mass % or more of excess Si with respect to the Mg2Si stoichiometric composition, 0.05 to 0.4 mass % of Cu, 0.2 to 0.4 mass % of Mn, 0.1 to 0.3 mass % of Cr, 0.2 mass % or less of Fe, 0.2 mass % or less of Zr, and 0.005 to 0.1 mass % of Ti, with the balance being aluminum and unavoidable impurities, the aluminum alloy extruded product having a fatigue strength of 140 MPa or more, a fatigue ratio of 0.45 or more, and an interval between striations on a fatigue fracture surface of 5.0 ?m or less.
    Type: Application
    Filed: August 19, 2009
    Publication date: February 25, 2010
    Applicants: AISIN KEIKINZOKU CO., LTD., SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Karin SHIBATA, Tomoo YOSHIDA, Hiroshi TABUCHI, Hidetoshi TAKAGI