Patents by Inventor Karl G. Strohmaier

Karl G. Strohmaier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7309806
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 18, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Patent number: 7255849
    Abstract: EMM-3 (ExxonMobil Material number 3) is a new crystalline microporous material with a framework of tetrahedral atoms connected by atoms capable of bridging the tetrahedral atoms, the tetrahedral atom framework being defined by the interconnections between the tetrahedrally coordinated atoms in its framework. EMM-3 can be prepared in aluminophosphate (AlPO) and metalloaluminophosphate (MeAPO) compositions with the hexamethonium template. It has a unique X-ray diffraction pattern, which identifies it as a new material. EMM-3 is stable to calcination in air, absorbs hydrocarbons, and is catalytically active for hydrocarbon conversion.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: August 14, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Karl G. Strohmaier, Arthur W. Chester, William R. Harrison, James C. Vartuli
  • Patent number: 7148172
    Abstract: A porous crystalline material is described having the chabazite framework type and having a composition involving the molar relationship: X2O3:(n)YO2, wherein X is a trivalent element, such as aluminum, boron, iron, indium, and/or gallium; Y is a tetravalent element such as silicon, tin, titanium and/or germanium; and n is greater than 100 and typically greater than 200, such as about 300 to about 4000, for example from about 400 to about 1200. The material is synthesized in a fluoride medium and exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: December 12, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Karl G. Strohmaier, Sebastian C. Reyes, Doron Levin
  • Patent number: 7148392
    Abstract: In a process for selectively separating 1-butene from a C4 feed stream comprising at least 1-butene, cis-2-butene and trans-2-butene, the feed stream is passed through a first bed of an adsorbent comprising a crystalline microporous material to form a substantially trans-2-butene-free effluent stream. Then, the substantially trans-2-butene-free effluent stream is passed through a second bed of an adsorbent comprising a crystalline microporous material to form a substantially 1-butene-free effluent stream, whereby the 1-butene is separated from the feed stream. The adsorbed 1-butene is then typically desorbed from the second adsorbent bed either by lowering the pressure or raising the temperature of the bed.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: December 12, 2006
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gary L. Casty, Richard B. Hall, Sebastian C. Reyes, Robert P. Reynolds, Jr., Karl G. Strohmaier
  • Patent number: 7119242
    Abstract: A method for the post synthesis modification of molecular sieves with organometallic reagents. The method may be used for large pore molecular sieves and small pore molecular sieves, such as SAPO-34. SAPO-34 is a useful catalyst for the conversion of oxygenates, such as methanol, to olefins. Post synthesis organometallic modification improves catalyst performance and increases light olefin selectivity in the conversion of methanol to olefins.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: October 10, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kun Wang, Guang Cao, Michael Joseph Brennan, Karl G. Strohmaier, Richard B. Hall
  • Patent number: 7094389
    Abstract: A crystalline material substantially free of framework phosphorus and comprising a CHA framework type molecular sieve with stacking faults or at least one intergrown phase of a CHA framework type molecular sieve and an AEI framework type molecular sieve, wherein said material, in its calcined, anhydrous form, has a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element; Y is a tetravalent element; and n is from 0 to about 0.5. The material exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: August 22, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Machteld M. Mertens, Karl G. Strohmaier, Richard B. Hall, Thomas Herman Colle, Mobae Afeworki, Antonie J. Bons, Wilfried J. Mortier, Chris Kliewer, Hailian Li, Anil S. Guram, Robert J. Saxton, Mark T. Muraoka, Jeffrey C. Yoder
  • Patent number: 7052664
    Abstract: Small particle size silicoaluminophosphate molecular sieves are obtained by providing the source of the silicon in the form of a basic organic solution.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: May 30, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld Mertens, Karl G. Strohmaier
  • Patent number: 7033971
    Abstract: A method for maintaining the activity of silicoaluminophosphate (SAPO) molecular sieve catalyst particles during oxygenate to olefin conversion reactions. After regeneration of SAPO catalyst particles, the regenerated particles are mixed with particles having coke on their surface in a manner that maintains their catalytic activity at a predetermined level.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: April 25, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shun C. Fung, Richard B. Hall, Hafedh Kochkar, Karl G. Strohmaier, Nicolas P. Coute, Kenneth R. Clem
  • Patent number: 7015174
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: March 21, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Patent number: 7008610
    Abstract: A crystalline material is described that has an AEI framework type, wherein the material, in its calcined, anhydrous form, has a composition involving the molar relationship: (n)X2O3:YO2, wherein X is a trivalent element, Y is a tetravalent element n is from 0 to less than 0.01. The material is normally synthesized in a halide, typically a fluoride, medium and exhibits activity and selectivity in the conversion of methanol to lower olefins, especially ethylene and propylene.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: March 7, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Karl G. Strohmaier, Hailian Li, Anil S. Guram, Robert J. Saxton, Mark T. Muraoka, Jeffrey C. Yoder, Karin Yaccato
  • Patent number: 7009086
    Abstract: This invention relates to a process for converting an oxygenate feedstock to light olefins using a crystalline metalloaluminophosphate molecular sieve having a high metal content and a small particle size. It also relates to crystalline metalloaluminophosphate molecular sieves with high metal content and a small particle size.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: March 7, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen H. Brown, Richard B. Hall, Karl G. Strohmaier
  • Patent number: 6984765
    Abstract: The present invention is a separation process for producing a methanol, ethanol and/or dimethyl ether stream from a first stream containing C3+ hydrocarbons. The first stream comprises C3+ hydrocarbons, methanol, ethanol and/or dimethyl ether. The process comprises the step of passing the first stream through an adsorbent bed having a crystalline microporous material that preferentially adsorbs methanol, ethanol and/or dimethyl ether over the C3+ hydrocarbons.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: January 10, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sebastian C. Reyes, Venkatesan V. Krishnan, Gregory J. DeMartin, John Henry Sinfelt, Karl G. Strohmaier, Jose Guadalupe Santiesteban
  • Patent number: 6903240
    Abstract: Small particle size SAPO-34 is obtained by using a tetraalkyl orthosilicate as the silicon source.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: June 7, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld Mertens, Karl G. Strohmaier
  • Publication number: 20040265204
    Abstract: EMM-3 (ExxonMobil Material number 3) is a new crystalline microporous material with a framework of tetrahedral atoms connected by atoms capable of bridging the tetrahedral atoms, the tetrahedral atom framework being defined by the interconnections between the tetrahedrally coordinated atoms in its framework. EMM-3 can be prepared in aluminophosphate (AlPO) and metalloaluminophosphate (MeAPO) compositions with the hexamethonium template. It has a unique X-ray diffraction pattern, which identifies it as a new material. EMM-3 is stable to calcination in air, absorbs hydrocarbons, and is catalytically active for hydrocarbon conversion.
    Type: Application
    Filed: June 8, 2004
    Publication date: December 30, 2004
    Inventors: Karl G. Strohmaier, Arthur W. Chester, William R. Harrison, James C. Vartuli
  • Patent number: 6835363
    Abstract: The invention is directed to a method of synthesizing aluminophosphate and silicoaluminophosphate molecular sieves and in particular to the synthesis of aluminophosphate and silicoaluminophosphate molecular sieves using the synthesis templates that contain two dimethylamino moieties in combination with hydrogen fluoride. The use of this template in combination with hydrogen fluoride results in good quality SAPO molecular sieves of CHA framework type with low levels of silicon that are produced in relatively short crystallization times.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: December 28, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Karl G. Strohmaier
  • Publication number: 20040260140
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Application
    Filed: June 20, 2003
    Publication date: December 23, 2004
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Publication number: 20040260138
    Abstract: In a process for selectively separating 1-butene from a C4 feed stream comprising at least 1-butene, cis-2-butene and trans-2-butene, the feed stream is passed through a first bed of an adsorbent comprising a crystalline microporous material to form a substantially trans-2-butene-free effluent stream. Then, the substantially trans-2-butene-free effluent stream is passed through a second bed of an adsorbent comprising a crystalline microporous material to form a substantially 1-butene-free effluent stream, whereby the 1-butene is separated from the feed stream. The adsorbed 1-butene is then typically desorbed from the second adsorbent bed either by lowering the pressure or raising the temperature of the bed.
    Type: Application
    Filed: June 17, 2003
    Publication date: December 23, 2004
    Inventors: Gary L. Casty, Richard B. Hall, Sebastian C. Reyes, Robert P. Reynolds, Karl G. Strohmaier
  • Publication number: 20040241072
    Abstract: Small particle size silicoaluminophosphate molecular sieves are obtained by providing the source of the silicon in the form of a basic organic solution.
    Type: Application
    Filed: July 1, 2004
    Publication date: December 2, 2004
    Inventors: Machteld Mertens, Karl G. Strohmaier
  • Publication number: 20040224839
    Abstract: A method for the post synthesis modification of molecular sieves with organometallic reagents. The method may be used for large pore molecular sieves and small pore molecular sieves, such as SAPO-34. SAPO-34 is a useful catalyst for the conversion of oxygenates, such as methanol, to olefins. Post synthesis organometallic modification improves catalyst performance and increases light olefin selectivity in the conversion of methanol to olefins.
    Type: Application
    Filed: June 1, 2004
    Publication date: November 11, 2004
    Inventors: Kun Wang, Guang Cao, Michael Joseph Brennan, Karl G. Strohmaier, Richard B. Hall
  • Patent number: 6793901
    Abstract: The invention is directed to a method for preparing microporous aluminophosphate or silicoaluminophosphate molecular sieves having the CHA framework type, the process comprising the steps of a) forming a reaction mixture comprising a source of aluminum, a source of phosphorus, optionally a source of silicon, at least one source of fluoride ions and at least one template containing one or more N,N-dimethylamino moieties, b) inducing crystallization of aluminophosphate and/or silicoaluminophosphate molecular sieve from the reaction mixture; c) recovering aluminophosphate and/or silicoaluminophosphate molecular sieve from the reaction mixture. The invention also relates to the molecular sieves obtained by this method and to molecular sieve catalyst compositions containing these molecular sieves.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: September 21, 2004
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Guang Cao, Matu J. Shah, Karl G. Strohmaier, Richard B. Hall