Patents by Inventor Karl Kissa

Karl Kissa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11378826
    Abstract: An electrical-optical modulator may include a first section configured for a first electrical-optical interaction between one or more optical waveguides and one or more signal electrodes. The electrical-optical modulator may include a second section configured to increase or decrease a relative velocity of signals of the one or more signal electrodes to optical signals of the one or more optical waveguides relative to the first section. The electrical-optical modulator may include a third section configured for a second electrical-optical interaction between the one or more optical waveguides and the one or more signal electrodes according to an opposite modulation polarity relative to the first section.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: July 5, 2022
    Assignee: Lumentum Operations LLC
    Inventors: Karl Kissa, David Glassner, Stephen Jones, Robert Griffin, John M. Heaton
  • Patent number: 11378825
    Abstract: An electrical-optical modulator may include one or more optical waveguides to propagate one or more optical signals in a direction of propagation. An optical waveguide of the one or more optical waveguides may include a time delay section, a first modulation section preceding the time delay section in the direction of propagation, and a second modulation section following the time delay section in the direction of propagation. The first modulation section and the second modulation section may be configured to be associated with opposite modulation polarities, and the time delay section may be configured to delay a phase of the one more optical signals relative to the first modulation section. The electrical-optical modulator may include one or more signal electrodes to propagate one or more signals in the direction of propagation in order to modulate the one or more optical signals through electrical-optical interaction.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: July 5, 2022
    Assignee: Lumentum Operations LLC
    Inventors: Karl Kissa, David Glassner, Stephen Jones, Robert Griffin, John M. Heaton
  • Publication number: 20210080798
    Abstract: An electrical-optical modulator may include a first section configured for a first electrical-optical interaction between one or more optical waveguides and one or more signal electrodes. The electrical-optical modulator may include a second section configured to increase or decrease a relative velocity of signals of the one or more signal electrodes to optical signals of the one or more optical waveguides relative to the first section. The electrical-optical modulator may include a third section configured for a second electrical-optical interaction between the one or more optical waveguides and the one or more signal electrodes according to an opposite modulation polarity relative to the first section.
    Type: Application
    Filed: June 19, 2020
    Publication date: March 18, 2021
    Inventors: Karl KISSA, John M. HEATON
  • Publication number: 20210080796
    Abstract: An electrical-optical modulator may include one or more optical waveguides to propagate one or more optical signals in a direction of propagation. An optical waveguide of the one or more optical waveguides may include a time delay section, a first modulation section preceding the time delay section in the direction of propagation, and a second modulation section following the time delay section in the direction of propagation. The first modulation section and the second modulation section may be configured to be associated with opposite modulation polarities, and the time delay section may be configured to delay a phase of the one more optical signals relative to the first modulation section. The electrical-optical modulator may include one or more signal electrodes to propagate one or more signals in the direction of propagation in order to modulate the one or more optical signals through electrical-optical interaction.
    Type: Application
    Filed: March 31, 2020
    Publication date: March 18, 2021
    Inventors: Karl KISSA, David GLASSNER, Stephen JONES, Robert GRIFFIN, John M. HEATON
  • Publication number: 20210080797
    Abstract: An electrical-optical modulator may include a first section configured for a first electrical-optical interaction between one or more optical waveguides and one or more signal electrodes. The electrical-optical modulator may include a second section configured to increase or decrease a relative velocity of signals of the one or more signal electrodes to optical signals of the one or more optical waveguides relative to the first section. The electrical-optical modulator may include a third section configured for a second electrical-optical interaction between the one or more optical waveguides and the one or more signal electrodes according to an opposite modulation polarity relative to the first section.
    Type: Application
    Filed: March 31, 2020
    Publication date: March 18, 2021
    Inventors: Karl KISSA, David GLASSNER, Stephen JONES, Robert GRIFFIN, John M. HEATON
  • Patent number: 10502987
    Abstract: A radio frequency (RF) interconnect for an optical modulator may comprise a circuit board to route a set of RF signals from a corresponding set of RF feeds to a substrate interface on a surface of a substrate of the optical modulator. The circuit board may be positioned along the surface of the substrate of the optical modulator. The circuit board may include a set of traces. A trace, of the set of traces, may be connected to a corresponding RF feed, of the set of RF feeds, at a height different than a height of the surface of the substrate of the optical modulator. The trace may be connected to the substrate interface.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: December 10, 2019
    Assignee: Lumentum Operations LLC
    Inventors: Siu Kwan Cheung, Glen Drake, Karl Kissa
  • Patent number: 10371968
    Abstract: A modulator may include a substrate. The modulator may include one or more waveguides formed upon or formed in the substrate. A signal electrode may be provided adjacent to at least one of the one or more waveguides and may include a curved outer surface. The modulator may include one or more ground electrodes provided adjacent to the signal electrode. Each ground electrode, of the one or more ground electrodes, may include a respective curved inner surface that is radially spaced from the curved outer surface of the signal electrode. The one or more ground electrodes and the substrate may at least substantially enclose the curved outer surface of the signal electrode.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: August 6, 2019
    Assignee: Lumentum Operations LLC
    Inventors: Gregory J. McBrien, Karl Kissa
  • Patent number: 10295849
    Abstract: An optical modulator may include at least one ground electrode. The optical modulator may include at least one signal electrode parallel to the at least one ground electrode. The optical modulator may include at least one waveguide parallel to the at least one ground electrode and the at least one signal electrode. The optical modulator may include a first substrate disposed underneath the at least one ground electrode and the at least one signal electrode relative to a surface of the optical modulator. The optical modulator may include a second substrate disposed underneath at least a portion of the first substrate relative to the surface of the optical modulator. The optical modulator may include a floating conductor disposed between the first substrate and the second substrate.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: May 21, 2019
    Assignee: Lumentum Operations LLC
    Inventors: Karl Kissa, Siu Kwan Cheung, David M. Shemo, David Glassner, Ed L. Wooten
  • Patent number: 10295844
    Abstract: A device may include a substrate. The device may include an optical waveguide formed in or on the substrate. The device may include a signal electrode extending along a longitudinal axis. The signal electrode may include a first portion with a proximal end that is proximal to the optical waveguide, to induce a signal from the signal electrode to the optical waveguide. The signal electrode may include a second portion, at least partially attached to or continuous with a distal end of the first portion. The device may include one or more ground electrodes that form an enclosure. The enclosure may enclose the signal electrode with regard to a side of the substrate in a plane perpendicular to the longitudinal axis.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: May 21, 2019
    Assignee: Lumentum Operations LLC
    Inventors: Karl Kissa, David Glassner
  • Publication number: 20180252948
    Abstract: A modulator may include a substrate. The modulator may include one or more waveguides formed upon or formed in the substrate. A signal electrode may be provided adjacent to at least one of the one or more waveguides and may include a curved outer surface. The modulator may include one or more ground electrodes provided adjacent to the signal electrode. Each ground electrode, of the one or more ground electrodes, may include a respective curved inner surface that is radially spaced from the curved outer surface of the signal electrode. The one or more ground electrodes and the substrate may at least substantially enclose the curved outer surface of the signal electrode.
    Type: Application
    Filed: May 7, 2018
    Publication date: September 6, 2018
    Inventors: Gregory J. MCBRIEN, Karl KISSA
  • Publication number: 20180173026
    Abstract: An optical modulator may include at least one ground electrode. The optical modulator may include at least one signal electrode parallel to the at least one ground electrode. The optical modulator may include at least one waveguide parallel to the at least one ground electrode and the at least one signal electrode. The optical modulator may include a first substrate disposed underneath the at least one ground electrode and the at least one signal electrode relative to a surface of the optical modulator. The optical modulator may include a second substrate disposed underneath at least a portion of the first substrate relative to the surface of the optical modulator. The optical modulator may include a floating conductor disposed between the first substrate and the second substrate.
    Type: Application
    Filed: October 27, 2017
    Publication date: June 21, 2018
    Inventors: Karl KISSA, Siu Kwan CHEUNG, David M. SHEMO, David GLASSNER, Ed L. WOOTEN
  • Patent number: 9964784
    Abstract: A modulator may include a substrate. The modulator may include one or more waveguides formed upon or formed in the substrate. A signal electrode may be provided adjacent to at least one of the one or more waveguides and may include a curved outer surface. The modulator may include one or more ground electrodes provided adjacent to the signal electrode. Each ground electrode, of the one or more ground electrodes, may include a respective curved inner surface that is radially spaced from the curved outer surface of the signal electrode. The one or more ground electrodes and the substrate may at least substantially enclose the curved outer surface of the signal electrode.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: May 8, 2018
    Assignee: Lumentum Operations LLC
    Inventors: Gregory J. McBrien, Karl Kissa
  • Patent number: 9851615
    Abstract: An optical modulator is disclosed, in which a MMI couplers are used for input signal splitting for branching into individual Mach-Zehnder interferometers, as well as for branching and combining from individual Mach-Zehnder waveguides. MMI couplers, splitters, and combiners may be cascaded and combined with single-mode Y-splitters and combiners to provide modulators of various types, including dual polarization, quadrature phase Mach-Zehnder interferometer base optical modulators.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: December 26, 2017
    Assignee: Lumentum Operations LLC
    Inventors: Charles M. Jewart, Yannick Lize, Karl Kissa
  • Publication number: 20170212403
    Abstract: An optical modulator is disclosed, in which a MMI couplers are used for input signal splitting for branching into individual Mach-Zehnder interferometers, as well as for branching and combining from individual Mach-Zehnder waveguides. MMI couplers, splitters, and combiners may be cascaded and combined with single-mode Y-splitters and combiners to provide modulators of various types, including dual polarization, quadrature phase Mach-Zehnder interferometer base optical modulators.
    Type: Application
    Filed: April 10, 2017
    Publication date: July 27, 2017
    Inventors: Charles M. JEWART, Yannick LIZE, Karl KISSA
  • Patent number: 9618821
    Abstract: An optical modulator is disclosed, in which a MMI couplers are used for input signal splitting for branching into individual Mach-Zehnder interferometers, as well as for branching and combining from individual Mach-Zehnder waveguides. MMI couplers, splitters, and combiners may be cascaded and combined with single-mode Y-splitters and combiners to provide modulators of various types, including dual polarization, quadrature phase Mach-Zehnder interferometer base optical modulators.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: April 11, 2017
    Assignee: Lumentum Operations LLC
    Inventors: Charles M. Jewart, Yannick Lize, Karl Kissa
  • Patent number: 9588395
    Abstract: A planar optical waveguide circuit includes an optical modulator, such as that based on a Mach-Zehnder interferometer, that is followed by an in-line optical tap in the form of a 2×2 multi-mode interference coupler that is characterized a reduced tracking error as compared to Y-junction couplers.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: March 7, 2017
    Assignee: Lumentum Operations LLC
    Inventors: Charles M. Jewart, Karl Kissa
  • Publication number: 20160357085
    Abstract: A planar optical waveguide circuit includes an optical modulator, such as that based on a Mach-Zehnder interferometer, that is followed by an in-line optical tap in the form of a 2×2 multi-mode interference coupler that is characterized a reduced tracking error as compared to Y-junction couplers.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 8, 2016
    Inventors: Charles M. JEWART, Karl Kissa
  • Publication number: 20160299361
    Abstract: A radio frequency (RF) interconnect for an optical modulator may comprise a circuit board to route a set of RF signals from a corresponding set of RF feeds to a substrate interface on a surface of a substrate of the optical modulator. The circuit board may be positioned along the surface of the substrate of the optical modulator. The circuit board may include a set of traces. A trace, of the set of traces, may be connected to a corresponding RF feed, of the set of RF feeds, at a height different than a height of the surface of the substrate of the optical modulator. The trace may be connected to the substrate interface.
    Type: Application
    Filed: April 5, 2016
    Publication date: October 13, 2016
    Inventors: Siu Kwan CHEUNG, Glen Drake, Karl Kissa
  • Publication number: 20160291352
    Abstract: A device may include a substrate. The device may include an optical waveguide formed in or on the substrate. The device may include a signal electrode extending along a longitudinal axis. The signal electrode may include a first portion with a proximal end that is proximal to the optical waveguide, to induce a signal from the signal electrode to the optical waveguide. The signal electrode may include a second portion, at least partially attached to or continuous with a distal end of the first portion. The device may include one or more ground electrodes that form an enclosure. The enclosure may enclose the signal electrode with regard to a side of the substrate in a plane perpendicular to the longitudinal axis.
    Type: Application
    Filed: April 5, 2016
    Publication date: October 6, 2016
    Inventors: Karl KISSA, David GLASSNER
  • Publication number: 20160291353
    Abstract: A modulator may include a substrate. The modulator may include one or more waveguides formed upon or formed in the substrate. A signal electrode may be provided adjacent to at least one of the one or more waveguides and may include a curved outer surface. The modulator may include one or more ground electrodes provided adjacent to the signal electrode. Each ground electrode, of the one or more ground electrodes, may include a respective curved inner surface that is radially spaced from the curved outer surface of the signal electrode. The one or more ground electrodes and the substrate may at least substantially enclose the curved outer surface of the signal electrode.
    Type: Application
    Filed: April 5, 2016
    Publication date: October 6, 2016
    Inventors: Gregory J. MCBRIEN, Karl KISSA