Patents by Inventor Karl Leeser

Karl Leeser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180309424
    Abstract: A matching module includes an input terminal connected to an input node, a variable load capacitor, and a plurality of RF signal delivery branches. The input terminal is connected to receive RF signals from one or more RF generators. The load capacitor is connected between the input node and a reference ground potential. Each of the plurality of RF signal delivery branches has a respective ingress terminal connected to the input node and a respective egress terminal connected to a respective one of a plurality of output terminals. Each of the plurality of output terminals of the matching module is connected to deliver RF signals to a different one of a plurality of plasma processing stations/chambers. Each of the plurality of RF signal delivery branches includes a corresponding inductor and a corresponding variable tuning capacitor electrically connected in a serial manner between its ingress terminal and its egress terminal.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 25, 2018
    Inventors: Karl Leeser, Sunil Kapoor, Bradford J. Lyndaker
  • Patent number: 10043636
    Abstract: An isolation system includes an input junction coupled to one or more RF power supplies via a match network for receiving radio frequency (RF) power. The isolation system further includes a plurality of channel paths connected to the input junction for distributing the RF power among the channel paths. The isolation system includes an output junction connected between each of the channel paths and to an electrode of a plasma chamber for receiving portions of the distributed RF power to output combined power and providing the combined RF power to the electrode. Each of the channel paths includes bottom and top capacitors for blocking a signal of the different type than that of the RF power. The isolation system avoids a risk of electrical arcing created by a voltage difference between an RF terminal and a non-RF terminal when the terminals are placed proximate to each other.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: August 7, 2018
    Assignee: Lam Research Corporation
    Inventors: Hyungjoon Kim, Sunil Kapoor, Karl Leeser, Vince Burkhart
  • Patent number: 10044338
    Abstract: A mutually induced filter for filtering radio frequency (RF) power from signals supplied to a load is described. The mutually induced filter includes a first portion connected to a first load element of the load for filtering RF power from one of the signals supplied to the first load element. The load is associated with a pedestal of a plasma chamber. The mutually induced filter further includes a second portion connected to a second load element of the load for filtering RF power from another one of the signals supplied to the second load element. The first and second portions are twisted with each other to be mutually coupled with each other to further facilitate a coupling of a resonant frequency associated with the first portion to the second portion.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: August 7, 2018
    Assignee: Lam Research Corporation
    Inventors: Sunil Kapoor, Aaron Logan, Hyungjoon Kim, Yaswanth Rangineni, Karl Leeser
  • Publication number: 20180211864
    Abstract: A mechanical indexer for a substrate processing tool includes first and second arms each having first and second end effectors. The first arm is configured to rotate on a first spindle to selectively position the first end effector of the first arm at a plurality of processing stations of the substrate processing tool and selectively position the second end effector of the first arm at the plurality of processing stations of the substrate processing tool. The second arm is configured to rotate on a second spindle to selectively position the first end effector of the second arm at the plurality of processing stations of the substrate processing tool and selectively position the second end effector of the second arm at the plurality of processing stations of the substrate processing tool. The first arm is configured to rotate independently of the second arm.
    Type: Application
    Filed: January 11, 2018
    Publication date: July 26, 2018
    Inventors: Michael Nordin, Karl Leeser, Richard Blank, Robert Sculac
  • Patent number: 9997422
    Abstract: A wafer is positioned on a wafer support apparatus beneath an electrode such that a plasma generation region exists between the wafer and the electrode. Radiofrequency signals of a first signal frequency are supplied to the plasma generation region to generate a plasma within the plasma generation region. Formation of a plasma instability is detected within the plasma based on supply of the radiofrequency signals of the first signal frequency. After detecting formation of the plasma instability, radiofrequency signals of a second signal frequency are supplied to the plasma generation region in lieu of the radiofrequency signals of the first signal frequency to generate the plasma. The second signal frequency is greater than the first signal frequency and is set to cause a reduction in ion energy within the plasma and a corresponding reduction in secondary electron emission from the wafer caused by ion interaction with the wafer.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: June 12, 2018
    Assignee: Lam Research Corporation
    Inventors: Ishtak Karim, Yukinori Sakiyama, Yaswanth Rangineni, Edward Augustyniak, Douglas Keil, Ramesh Chandrasekharan, Adrien LaVoie, Karl Leeser
  • Patent number: 9970108
    Abstract: A vapor delivery system includes an ampoule to store liquid precursor and a heater to partially vaporize the liquid precursor. A first valve communicates with a push gas source and the ampoule. A second valve supplies vaporized precursor to a heated injection manifold. A valve manifold includes a first node in fluid communication with an outlet of the heated injection manifold, a third valve having an inlet in fluid communication with the first node and an outlet in fluid communication with vacuum, a fourth valve having an inlet in fluid communication with the first node and an outlet in fluid communication with a second node, a fifth valve having an outlet in fluid communication with the second node, and a sixth valve having an outlet in fluid communication with the second node. A gas distribution device is in fluid communication with the second node.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: May 15, 2018
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Jun Qian, Hu Kang, Purushottam Kumar, Chloe Baldasseroni, Heather Landis, Andrew Kenichi Duvall, Mohamed Sabri, Ramesh Chandrasekharan, Karl Leeser, Shankar Swaminathan, David Smith, Jeremiah Baldwin, Eashwar Ranganathan, Adrien LaVoie, Frank Pasquale, Jeongseok Ha, Ingi Bae
  • Publication number: 20180122633
    Abstract: A carrier plate for receiving a wafer includes a pocket defined in a middle section on a top surface of the carrier plate and has a surface diameter. The pocket defines a substrate support region. A retaining feature of the carrier plate is defined at an outer edge of the pocket. A tapered portion of the carrier plate extends from the retaining feature to an outer diameter. The tapered portion is configured to receive a focus ring. A bottom surface of the carrier plate is configured to sit over a pedestal that is used in a process chamber. A plurality of wafer supports is disposed on a top surface of the substrate support region to support the wafer, when received.
    Type: Application
    Filed: November 3, 2016
    Publication date: May 3, 2018
    Inventor: Karl Leeser
  • Publication number: 20180122685
    Abstract: A pedestal for a substrate processing system includes a pedestal body including a substrate-facing surface. An annular band is arranged on the substrate-facing surface that is configured to support a radially outer edge of the substrate. A cavity is defined in the substrate-facing surface of the pedestal body and is located radially inside of the annular band. The cavity creates a volume between a bottom surface of the substrate and the substrate-facing surface of the pedestal body. A plurality of vents pass though the pedestal body and are in fluid communication with the cavity to equalize pressure on opposing faces of the substrate during processing.
    Type: Application
    Filed: February 13, 2017
    Publication date: May 3, 2018
    Inventors: Patrick Breiling, Ramesh Chandrasekharan, Karl Leeser, Paul Konkola, Adrien LaVoie, Chloe Baldasseroni, Shankar Swaminathan, lshtak Karim, Yukinori Sakiyama, Edmund Minshall, Sung Je Kim, Andrew Duvall, Frank Pasquale
  • Patent number: 9954508
    Abstract: A matching module includes an input terminal connected to an input node, a variable load capacitor, and a plurality of RF signal delivery branches. The input terminal is connected to receive RF signals from one or more RF generators. The load capacitor is connected between the input node and a reference ground potential. Each of the plurality of RF signal delivery branches has a respective ingress terminal connected to the input node and a respective egress terminal connected to a respective one of a plurality of output terminals. Each of the plurality of output terminals of the matching module is connected to deliver RF signals to a different one of a plurality of plasma processing stations/chambers. Each of the plurality of RF signal delivery branches includes a corresponding inductor and a corresponding variable tuning capacitor electrically connected in a serial manner between its ingress terminal and its egress terminal.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: April 24, 2018
    Assignee: Lam Research Corporation
    Inventors: Karl Leeser, Sunil Kapoor, Bradford J. Lyndaker
  • Patent number: 9941113
    Abstract: Systems and methods are disclosed for plasma enabled film deposition on a wafer in which a plasma is generated using radiofrequency signals of multiple frequencies and in which a phase angle relationship is controlled between the radiofrequency signals of multiple frequencies. In the system, a pedestal is provided to support the wafer. A plasma generation region is formed above the pedestal. An electrode is disposed in proximity to the plasma generation region to provide for transmission of radiofrequency signals into the plasma generation region. A radiofrequency power supply provides multiple radiofrequency signals of different frequencies to the electrode. A lowest of the different frequencies is a base frequency, and each of the different frequencies that is greater than the base frequency is an even harmonic of the base frequency. The radiofrequency power supply provides for variable control of the phase angle relationship between each of the multiple radiofrequency signals.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: April 10, 2018
    Assignee: Lam Research Corporation
    Inventors: Douglas Keil, Ishtak Karim, Yaswanth Rangineni, Adrien LaVoie, Yukinori Sakiyama, Edward Augustyniak, Karl Leeser, Chunhai Ji
  • Patent number: 9920844
    Abstract: A gas delivery system for a substrate processing system includes first and second valves, a first gas channel, and a cylinder. The first valve includes a first inlet and a first outlet. The first outlet is in fluid communication with a processing chamber of the substrate processing system. The second valve includes a second inlet and a second outlet. The cylinder defines a second gas channel having a first end and a second end. The cylinder is at least partially disposed within the first gas channel such that the cylinder and the first gas channel collectively define a flow channel. The flow channel is in fluid communication with the first end of the second gas channel and with the first inlet. A third gas channel is in fluid communication with the second end of the second gas channel and with the second inlet.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: March 20, 2018
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Karl Leeser, Saangrut Sangplung, Shankar Swaminathan, Frank Pasquale, Chloe Baldasseroni, Ted Minshall, Adrien LaVoie
  • Patent number: 9916995
    Abstract: A substrate processing tool includes N substrate processing stations arranged in a first transfer plane around a central cavity, where N is an integer greater than one. At least one of the N substrate processing stations is configured to process the substrate. M substrate processing stations are arranged in a second transfer plane around the central cavity, where M is an integer greater than one. The second transfer plane is arranged parallel to and above the first transfer plane. An upper tool portion includes the M substrate processing stations and a first portion of the N substrate processing stations. A rotatable lower tool portion rotates relative to the upper tool portion. A second portion of the N substrate processing stations rotates with the rotatable lower tool portion.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: March 13, 2018
    Assignee: LAM RESEARCH CORPORATION
    Inventor: Karl Leeser
  • Publication number: 20180068833
    Abstract: A substrate processing system for depositing film on a substrate includes a processing chamber defining a reaction volume. A showerhead includes a stem portion having one end connected adjacent to an upper surface of the processing chamber. A base portion is connected to an opposite end of the stem portion and extends radially outwardly from the stem portion. The showerhead is configured to introduce at least one of process gas and purge gas into the reaction volume. A plasma generator is configured to selectively generate RF plasma in the reaction volume. An edge tuning system includes a collar and a parasitic plasma reducing element that is located around the stem portion between the collar and an upper surface of the showerhead. The parasitic plasma reducing element is configured to reduce parasitic plasma between the showerhead and the upper surface of the processing chamber.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 8, 2018
    Inventors: Hu Kang, Adrien LaVoie, Shankar Swaminathan, Jun Qian, Chloe Baldasseroni, Frank Pasquale, Andrew Duvall, Ted Minshall, Jennifer Petraglia, Karl Leeser, David Smith, Sesha Varadarajan, Edward Augustyniak, Douglas Keil
  • Publication number: 20180033672
    Abstract: A substrate support for a substrate processing system is provided and includes a body and mesas. The mesas are distributed across and extending from and in a direction away from the body. The mesas are configured to support a substrate. Each of the mesas includes a surface area that contacts and supports the substrate. Areal density of the mesas monotonically increases as a radial distance from a center of the substrate support increases.
    Type: Application
    Filed: July 27, 2016
    Publication date: February 1, 2018
    Inventors: Peter Woytowitz, Vincent Burkhart, Michael Rumer, Karl Leeser
  • Publication number: 20170327947
    Abstract: A method for processing a substrate in a substrate processing system includes flowing reactant gases into a process chamber including a substrate, supplying a first power level sufficient to promote rearrangement of molecules on a surface of the substrate, waiting a first predetermined period, and, after the first predetermined period, performing plasma-enhanced, pulsed chemical vapor deposition of film on the substrate by supplying one or more precursors while supplying a second power level for a second predetermined period. The second power level is greater than the first power level. The method further includes removing reactants from the process chamber.
    Type: Application
    Filed: August 3, 2017
    Publication date: November 16, 2017
    Inventors: Adrien LaVoie, Hu Kang, Karl Leeser
  • Publication number: 20170330744
    Abstract: Systems and methods are disclosed for plasma enabled film deposition on a wafer in which a plasma is generated using radiofrequency signals of multiple frequencies and in which a phase angle relationship is controlled between the radiofrequency signals of multiple frequencies. In the system, a pedestal is provided to support the wafer. A plasma generation region is formed above the pedestal. An electrode is disposed in proximity to the plasma generation region to provide for transmission of radiofrequency signals into the plasma generation region. A radiofrequency power supply provides multiple radiofrequency signals of different frequencies to the electrode. A lowest of the different frequencies is a base frequency, and each of the different frequencies that is greater than the base frequency is an even harmonic of the base frequency. The radiofrequency power supply provides for variable control of the phase angle relationship between each of the multiple radiofrequency signals.
    Type: Application
    Filed: May 1, 2017
    Publication date: November 16, 2017
    Inventors: Douglas Keil, Ishtak Karim, Yaswanth Rangineni, Adrien LaVoie, Yukinori Sakiyama, Edward Augustyniak, Karl Leeser, Chunhai Ji
  • Patent number: 9793096
    Abstract: A substrate processing system for depositing film on a substrate includes a processing chamber defining a reaction volume. A showerhead includes a stem portion having one end connected adjacent to an upper surface of the processing chamber. A base portion is connected to an opposite end of the stem portion and extends radially outwardly from the stem portion. The showerhead is configured to introduce at least one of process gas and purge gas into the reaction volume. A plasma generator is configured to selectively generate RF plasma in the reaction volume. An edge tuning system includes a collar and a parasitic plasma reducing element that is located around the stem portion between the collar and an upper surface of the showerhead. The parasitic plasma reducing element is configured to reduce parasitic plasma between the showerhead and the upper surface of the processing chamber.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: October 17, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Hu Kang, Adrien LaVoie, Shankar Swaminathan, Jun Qian, Chloe Baldasseroni, Frank Pasquale, Andrew Duvall, Ted Minshall, Jennifer Petraglia, Karl Leeser, David Smith, Sesha Varadarajan, Edward Augustyniak, Douglas Keil
  • Publication number: 20170260627
    Abstract: A substrate processing system includes a showerhead including a stem portion and a head portion. The stem portion is in fluid communication with a process gas source, and the head portion is arranged to provide process gases from the process gas source to a reaction volume of a processing chamber below the showerhead to generate plasma in the reaction volume. A suppressor is arranged above the head portion of the showerhead, extends from the stem portion toward sidewalls of the processing chamber, and is sealed against the sidewalls of the processing chamber or sealed against an enclosure surrounding the suppressor. The suppressor, the sidewalls, and a top surface of the processing chamber, the suppressor and the enclosure, or the suppressor, the enclosure, and the top surface define a partitioned volume of the processing chamber above the showerhead. The partitioned volume is in fluid communication with a purge gas source.
    Type: Application
    Filed: March 10, 2016
    Publication date: September 14, 2017
    Inventors: Patrick Girard Breiling, Ramesh Chandrasekharan, Edmund Minshall, Colin Smith, Andrew Duvall, Karl Leeser
  • Patent number: 9758868
    Abstract: A substrate processing system includes a showerhead including a stem portion and a head portion. The stem portion is in fluid communication with a process gas source, and the head portion is arranged to provide process gases from the process gas source to a reaction volume of a processing chamber below the showerhead to generate plasma in the reaction volume. A suppressor is arranged above the head portion of the showerhead, extends from the stem portion toward sidewalls of the processing chamber, and is sealed against the sidewalls of the processing chamber or sealed against an enclosure surrounding the suppressor. The suppressor, the sidewalls, and a top surface of the processing chamber, the suppressor and the enclosure, or the suppressor, the enclosure, and the top surface define a partitioned volume of the processing chamber above the showerhead. The partitioned volume is in fluid communication with a purge gas source.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: September 12, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Patrick Girard Breiling, Ramesh Chandrasekharan, Edmund Minshall, Colin Smith, Andrew Duvall, Karl Leeser
  • Publication number: 20170243722
    Abstract: A charge volume configuration for use in delivery of gas to a reactor for processing semiconductor wafers is provided. A charge volume includes a chamber that extends between a proximal end and a distal end. A base connected to the proximal end of the chamber, and the base includes an inlet port and an outlet port. A tube is disposed within the chamber. The tube has a tube diameter that is less than a chamber diameter. The tube has a connection end coupled to the inlet port at the proximal end of the chamber and an output end disposed at the distal end of the chamber.
    Type: Application
    Filed: February 23, 2016
    Publication date: August 24, 2017
    Inventor: Karl Leeser