Patents by Inventor Karl Williams

Karl Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11981598
    Abstract: An article is described herein that includes: a glass-based substrate comprising opposing major surfaces; a crack mitigating composite over one of the major surfaces, the composite comprising an inorganic element and a polymeric element; and a hard film disposed on the crack mitigating composite comprising an elastic modulus greater than or equal to the elastic modulus of the glass-based substrate. The crack mitigating composite is characterized by an elastic modulus of greater than 30 GPa. Further, the hard film comprises at least one of a metal-containing oxide, a metal-containing oxynitride, a metal-containing nitride, a metal-containing carbide, a silicon-containing polymer, a carbon, a semiconductor, and combinations thereof.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: May 14, 2024
    Assignee: Corning Incorporated
    Inventors: Robert Alan Bellman, Shandon Dee Hart, Jenny Kim, Karl William Koch, III, James Joseph Price, Hannah Shenouda
  • Patent number: 11980790
    Abstract: Various embodiments are disclosed for automated gait evaluation for retraining of running form using machine learning and digital video data. At least one machine learning routine is executed using video data to generate positional data of anatomical landmarks of a human or bipedal non-human subject in a video. Gait metrics and/or characteristics are determined for multiple stages of a gait cycle based on the positional data. An optimal gait cycle for a given body part or gait metric of the subject is determined and may be adjusted based on at least one covariable over time. A suggested change to movement patterns of the subject at specific timepoints or stages of the gait cycle that minimize a difference between the gait cycle of the subject and an optimal gait cycle are shown on a display device.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: May 14, 2024
    Assignee: Agile Human Performance, Inc.
    Inventors: Nicholas William Sterling, Karl Van Sterling
  • Patent number: 11977206
    Abstract: A display article is described herein that includes: a substrate comprising a thickness and primary surface; a diffractive surface region defined by the primary surface; and an antireflective coating disposed on the diffractive surface region. The diffractive surface region comprises structural features that comprise different heights in a multimodal distribution. The substrate exhibits a sparkle of <4%, and a transmittance haze of <20%, each from an incident angle of 0°. The antireflection coating comprises a plurality of alternating high refractive index and low refractive index layers. Further, each of the low index layers comprises a refractive index of ?about 1.8, and each of the high index layers comprises a refractive index of >1.8. The article exhibits a first-surface average visible specular reflectance of less than 0.2% at an incident angle of 20°, and a maximum hardness of ?8 GPa in a Berkovich Indenter Hardness Test.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: May 7, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Wageesha Senaratne, William Allen Wood
  • Publication number: 20240142668
    Abstract: An article that includes: an inorganic oxide substrate having opposing major surfaces; and an optical film structure disposed on a first major surface of the substrate, the optical film structure comprising one or more of a silicon-containing oxide, a silicon-containing nitride and a silicon-containing oxynitride and a physical thickness from about 50 nm to less than 500 nm. The article exhibits a hardness of 8 GPa or greater measured at an indentation depth of about 100 nm or a maximum hardness of 9 GPa or greater measured over an indentation depth range from about 100 nm to about 500 nm, the hardness and the maximum hardness measured by a Berkovich Indenter Hardness Test. Further, the article exhibits a single-side photopic average reflectance that is less than 1%.
    Type: Application
    Filed: January 10, 2024
    Publication date: May 2, 2024
    Inventors: Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Alexandre Michel Mayolet, James Joseph Price
  • Patent number: 11971519
    Abstract: A display article is described herein that includes: a substrate comprising a thickness and a primary surface; a textured surface region; and an antireflective coating disposed on the textured surface region. The textured surface region comprises structural features and an average texture height (Rtext) from 50 nm to 300 nm. The substrate exhibits a sparkle of less than 5%, as measured by PPD140, and a transmittance haze of less than 40%, at a 0° incident angle. The antireflective coating comprises alternating high refractive index and low refractive index layers. Each of the low index layers comprises a refractive index of less than or equal to 1.8, and each of the high index layers comprises a refractive index of greater than 1.8. The article also exhibits a first-surface average photopic specular reflectance (% R) of less than 0.3% at any incident angle from about 5° to 20° from normal at visible wavelengths.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: April 30, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Cameron Robert Nelson, James Joseph Price, Jayantha Senawiratne, Florence Christine Monique Verrier, David Lee Weidman
  • Publication number: 20240122427
    Abstract: A filter arrangement for a vacuum cleaning appliance includes: a filter enclosure having an enclosure opening; a filter configured to be received through the enclosure opening into the filter enclosure in an insertion direction; and retention means operable between latched and unlatched states for releasably retaining the filter in the filter enclosure. The filter includes an actuation portion configured to operate the retention means, wherein the actuation portion is moveable between at least first and second positions and is biased towards the second position. When the filter is in the filter enclosure, movement of the actuation portion in the insertion direction from the first position to a depressed position transitions the retention means to the unlatched state, whereinafter the actuation portion is moved to the second position in which at least a part of the actuation portion is elevated above the enclosure opening.
    Type: Application
    Filed: December 14, 2021
    Publication date: April 18, 2024
    Applicant: Dyson Technology Limited
    Inventors: Jacob DYSON, Mark Timothy SHADDICK, Karl Alan JOLLY, Ketan PATEL, Taylor Teck Hui LIM, Jeremy William CROUCH, Miles Sinclair QUANCE
  • Publication number: 20240116801
    Abstract: A colored glass article includes greater than or equal to 50 mol % and less than or equal to 80 mol % SiO2; greater than or equal to 7 mol % and less than or equal to 25 mol % Al2O3; greater than or equal to 1 mol % and less than or equal to 15 mol % B2O3; greater than or equal to 5 mol % and less than or equal to 20 mol % Li2O; greater than or equal to 0.5 mol % and less than or equal to 15 mol % Na2O; greater than 0 mol % and less than or equal to 1 mol % K2O; and greater than or equal to 1×10?6 mol % and less than or equal to 1 mol % Au. R2O—Al2O3 is greater than or equal to ?5 mol % and less than or equal to 7 mol %, R2O being the sum of Li2O, Na2O, and K2O.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 11, 2024
    Inventors: Xiaoju Guo, Jill Marie Hall, Karl William Koch, III, Jesse Kohl, Jian Luo, Liping Xiong Smith, Nicole Taylor Wiles
  • Publication number: 20240115829
    Abstract: There is disclosed system for oxygenating a patient in relation to anaesthesia using high flow gas delivery. The system has a flow source, and a controller for determining oxygenation requirements of the patient before or during anaesthesia. A method of oxygenating a patient in relation to anaesthesia using high flow gas delivery is also disclosed. The method determines oxygenation requirements of the patient before or during anaesthesia.
    Type: Application
    Filed: August 22, 2023
    Publication date: April 11, 2024
    Inventors: Matthew Jon Payton, Alicia Jerram Hunter Evans, Thomas Henrich Barnes, Dexter Chi Lun Cheung, Craig Karl White, Anthony Brendan Williams, Laurence Gulliver, Michael Barraclough, Jonathan Mark Church, Jonathan David Harwood, Samantha Dale Oldfield, Callum James Thomas Spence, Milanjot Singh Assi
  • Publication number: 20240112890
    Abstract: A faceplate of a showerhead has a bottom side that faces a plasma generation region and a top side that faces a plenum into which a process gas is supplied during operation of a substrate processing system. The faceplate includes apertures formed through the bottom side and openings formed through the top side. Each of the apertures is formed to extend through a portion of an overall thickness of the faceplate to intersect with at least one of the openings to form a corresponding flow path for process gas through the faceplate. Each of the apertures has a cross-section that has a hollow cathode discharge suppression dimension in at least one direction. Each of the openings has a cross-section that has a smallest cross-sectional dimension that is greater than the hollow cathode discharge suppression dimension.
    Type: Application
    Filed: December 5, 2023
    Publication date: April 4, 2024
    Inventors: Michael John Selep, Patrick G. Breiling, Karl Frederick Leeser, Timothy Scott Thomas, David William Kamp, Sean M. Donnelly
  • Patent number: 11948792
    Abstract: Embodiments of a glass wafer for semiconductor fabrication processes are described herein. In some embodiments, a glass wafer includes: a glass substrate comprising: a top surface, a bottom surface opposing the top surface, and an edge surface between the top surface and the bottom surface; a first coating disposed atop the glass substrate, wherein the first coating is a doped crystalline silicon coating having a sheet-resistance of 100 to 1,000,000 ohm per square; and a second coating having one or more layers disposed atop the glass substrate, wherein the second coating comprises a silicon containing coating, wherein the glass wafer has an average transmittance (T) of less than 50% over an entire wavelength range of 400 nm to 1000 nm.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: April 2, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Ya-Huei Chang, Karl William Koch, III, Jen-Chieh Lin, Jian-Zhi Jay Zhang
  • Patent number: 11940593
    Abstract: A display article is described herein that includes: a substrate comprising a thickness and a primary surface; and the primary surface having defined thereon a diffractive surface region. The diffractive surface region comprises a plurality of structural features that comprises a plurality of different heights in a multimodal distribution. Further, the substrate exhibits a sparkle of less than 4%, as measured by pixel power deviation (PPD140) at an incident angle of 0° from normal, a distinctness of image (DOI) of less than 80% at an incident angle of 20° from normal, and a transmittance haze of less than 20% from an incident angle of 0° from normal.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: March 26, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Jiangwei Feng, Shandon Dee Hart, Karl William Koch, III, Cameron Robert Nelson, Wageesha Senaratne, William Allen Wood
  • Patent number: 11935534
    Abstract: A system and method for voice control of a media playback device is disclosed. The method includes receiving an instruction of a voice command, converting the voice command to text, transmitting the text command to the playback device, and having the playback device execute the command. An instruction may include a command to play a set of audio tracks, and the media playback device plays the set of audio tracks upon receiving the instruction.
    Type: Grant
    Filed: March 15, 2022
    Date of Patent: March 19, 2024
    Assignee: Spotify AB
    Inventors: Daniel Bromand, Richard Mitic, Horia Jurcut, Jennifer Thom-Santelli, Henriette Cramer, Karl Humphreys, Robert Williams, Kurt Jacobson, Henrik Lindström
  • Patent number: 11935526
    Abstract: A system and method for voice control of a media playback device is disclosed. The method includes receiving an instruction of a voice command, converting the voice command to text, transmitting the text command to the playback device, and having the playback device execute the command. An instruction may include a command to play a set of audio tracks, and the media playback device plays the set of audio tracks upon receiving the instruction.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: March 19, 2024
    Assignee: Spotify AB
    Inventors: Daniel Bromand, Richard Mitic, Horia Jurcut, Jennifer Thom-Santelli, Henriette Cramer, Karl Humphreys, Robert Williams, Kurt Jacobson, Henrik Lindström
  • Patent number: 11927722
    Abstract: A transparent article is described herein that includes: a glass-ceramic substrate comprising first and second primary surfaces opposing one another and a crystallinity of at least 40% by weight; and an optical film structure disposed on the first primary surface. The optical film structure comprises a plurality of alternating high refractive index (RI) and low RI layers and a scratch-resistant layer. The article also exhibits an average photopic transmittance of greater than 80% and a maximum hardness of greater than 10 GPa, as measured by a Berkovich Hardness Test over an indentation depth range from about 100 nm to about 500 nm. The glass-ceramic substrate comprises an elastic modulus of greater than 85 GPa and a fracture toughness of greater than 0.8 MPa·?m. Further, the optical film structure exhibits a residual compressive stress of ?700 MPa and an elastic modulus of ?140 GPa.
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: March 12, 2024
    Assignee: Corning Incorporated
    Inventors: Jaymin Amin, Jason Thomas Harris, Shandon Dee Hart, Chang-gyu Kim, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Dong-gun Moon, Jeonghong Oh, James Joseph Price, Charlene Marie Smith, Ananthanarayanan Subramanian, Ljerka Ukrainczyk, Tingge Xu
  • Publication number: 20240076180
    Abstract: A beverage production system, comprising a cup dispensing station configured to dispense cups, a beverage dispensing station configured to dispense a beverage, and a turntable assembly. The turntable assembly comprising a central axis, an inner turntable including a first row of cup receptacles, and an outer turntable including a second row of cup receptacles. The outer turntable is disposed circumferentially about the inner turntable, and the outer turntable is configured to rotate about the central axis to align the cup receptacles of the second row with the cup dispensing station and the beverage dispensing station. The turntable assembly is configured to align an opening in a cup receptacle in the second row with an opening in a cup receptacle in the first row. A slide assembly includes an arm configured to slide a cup positioned in the cup receptacle in the second row into the aligned opening of the cup receptacle in the first row.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 7, 2024
    Inventors: Nicholas Michael Degnan, Arthur Francois David Levy, Robert William Lyle, Joseph Park, Aaron Thomas, Karl Thomas Szatrowski, Won Suk You, Elvis Junior Palma, Sze Wun Wong
  • Publication number: 20240069246
    Abstract: An article is described herein that includes an optical coating on both a first portion and a second portion of a first major surface of a substrate. The first portion and the second portion face in different directions. The optical coating forms an anti-reflective surface, has a total thickness of less than 1000 nm, and is thicker over the first portion than over the second portion. The optical coating exhibits a first surface reflected color characterized by International Commission on Illumination (“CIE”) L*a*b* color space values of: (i) a*, from ?6.0 to +4.5, and (ii) b*, from ?11.0 to +6.0 at all viewing angles within a range of from 0 degrees to 10 degrees relative to a normal of the first major surface at both (i) the first portion and (ii) the second portion where the total thickness of the optical coating is 75% to 90% of the maximum value of the total thickness.
    Type: Application
    Filed: August 24, 2023
    Publication date: February 29, 2024
    Inventors: Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin
  • Publication number: 20240059604
    Abstract: A glass composition includes greater than or equal to 50 mol % and less than or equal to 70 mol % SiO2; greater than or equal to 10 mol % and less than or equal to 20 mol % Al2O3; greater than or equal to 1 mol % and less than or equal to 10 mol % B2O3; greater than or equal to 7 mol % and less than or equal to 14 mol % Li2O; greater than 0 mol % and less than or equal to 8 mol % Na2O; greater than 0 mol % and less than or equal to 1 mol % K2O; greater than or equal to 0 mol % and less than or equal to 7 mol % CaO; greater than or equal to 0 mol % and less than or equal to 8 mol % MgO; and greater than or equal to 0 mol % and less than or equal to 8 mol % ZnO. R2O+R?O is less than or equal to 25 mol %, wherein R2O is the sum of Li2O, Na2O, and K2O and R?O is the sum of CaO, MgO, and ZnO. The glass composition includes at least one of NiO+Co3O4+Cr2O3+CuO is greater than or equal to 0.001 mol %, CeO2 is greater than or equal to 0.1 mol %, and TiO2 is greater than or equal to 0.1 mol %.
    Type: Application
    Filed: November 3, 2023
    Publication date: February 22, 2024
    Inventors: Xiaoju Guo, Karl William Koch, III, Liping Xiong Smith, Nicole Taylor Wiles
  • Patent number: 11906699
    Abstract: An article that includes: an inorganic oxide substrate having opposing major surfaces; and an optical film structure disposed on a first major surface of the substrate, the optical film structure comprising one or more of a silicon-containing oxide, a silicon-containing nitride and a silicon-containing oxynitride and a physical thickness from about 50 nm to less than 500 nm. The article exhibits a hardness of 8 GPa or greater measured at an indentation depth of about 100 nm or a maximum hardness of 9 GPa or greater measured over an indentation depth range from about 100 nm to about 500 nm, the hardness and the maximum hardness measured by a Berkovich Indenter Hardness Test. Further, the article exhibits a single-side photopic average reflectance that is less than 1%.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: February 20, 2024
    Assignee: Corning Incorporated
    Inventors: Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, Alexandre Michel Mayolet, James Joseph Price
  • Publication number: 20240045106
    Abstract: An article is described herein that includes: a translucent substrate having a major surface; and an anti-reflective coating disposed on the major surface and forming an anti-reflective surface. The article exhibits a single side average photopic light reflectance at the anti-reflective surface of less than 0.35%. Further, the article exhibits a single side color shift (?C) of less than 6 over an incident angle range from 0 degrees to 60 degrees incidence at the anti-reflective surface, wherein the anti-reflective coating comprises a physical thickness from about 50 nm to less than 500 nm. In addition, the anti-reflective coating comprises a plurality of layers that comprises at least one low refractive index layer and at least one high refractive index layer. Further, each high refractive index layer has a refractive index of greater than 2.0 and each low refractive index layer has a refractive index of less than 1.7.
    Type: Application
    Filed: October 10, 2023
    Publication date: February 8, 2024
    Inventors: Shandon Dee Hart, Karl William Koch, III, Carlo Anthony Kosik Williams, Lin Lin, James Joseph Price, Nicholas Michael Walker
  • Patent number: 11891332
    Abstract: A colored glass article includes greater than or equal to 50 mol % and less than or equal to 80 mol % SiO2; greater than or equal to 7 mol % and less than or equal to 25 mol % Al2O3; greater than or equal to 1 mol % and less than or equal to 15 mol % B2O3; greater than or equal to 5 mol % and less than or equal to 20 mol % Li2O; greater than or equal to 0.5 mol % and less than or equal to 15 mol % Na2O; greater than 0 mol % and less than or equal to 1 mol % K2O; and greater than or equal to 1×10?6 mol % and less than or equal to 1 mol % Au. R2O—Al2O3 is greater than or equal to ?5 mol % and less than or equal to 7 mol %, R2O being the sum of Li2O, Na2O, and K2O.
    Type: Grant
    Filed: January 5, 2023
    Date of Patent: February 6, 2024
    Assignee: Corning Incorporated
    Inventors: Xiaoju Guo, Jill Marie Hall, Karl William Koch, III, Jesse Kohl, Jian Luo, Liping Xiong Smith, Nicole Taylor Wiles