Patents by Inventor Karla E. Madrigal

Karla E. Madrigal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9566274
    Abstract: Methods for enhancing the release and/or absorption of poorly water soluble active agents are described herein. The method involves dissolving, melting, or suspending a poorly water soluble active agent in one or more molten fatty acids, conjugated fatty acids, (semi-) solid surfactants of high HLB value, and/or hydrophilic polymers. The molten active agent mixture is then suspended and homogenized in a hydrophilic or lipophilic carrier to form microparticles suspended in the hydrophilic or lipophilic carrier. The particles suspended in the hydrophilic or lipophilic carrier can be encapsulated in a hard or soft gelatin or non-gelatin capsule. It is believed that the microparticles produced by the method described above will exhibit enhanced dissolution profiles. In vitro release studies of formulations containing cilostazol and fenofibrate showed 100% dissolution of cilostazol in 15 minutes and over 90% dissolution of fenofibrate in 35 minutes.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: February 14, 2017
    Assignee: Banner Life Sciences LLC
    Inventors: Aqeel A. Fatmi, Tae Kyoung Kim, Karla E. Madrigal
  • Publication number: 20150182519
    Abstract: Methods for enhancing the release and/or absorption of poorly water soluble active agents are described herein. The method involves dissolving, melting, or suspending a poorly water soluble active agent in one or more molten fatty acids, conjugated fatty acids, (semi-) solid surfactants of high HLB value, and/or hydrophilic polymers. The molten active agent mixture is then suspended and homogenized in a hydrophilic or lipophilic carrier to form microparticles suspended in the hydrophilic or lipophilic carrier. The particles suspended in the hydrophilic or lipophilic carrier can be encapsulated in a hard or soft gelatin or non-gelatin capsule. It is believed that the microparticles produced by the method described above will exhibit enhanced dissolution profiles. In vitro release studies of formulations containing cilostazol and fenofibrate showed 100% dissolution of cilostazol in 15 minutes and over 90% dissolution of fenofibrate in 35 minutes.
    Type: Application
    Filed: December 3, 2014
    Publication date: July 2, 2015
    Inventors: Aqeel Fatmi, Tae Kyoung Kim, Karla E. Madrigal
  • Patent number: 8920844
    Abstract: Methods for enhancing the release and/or absorption of poorly water soluble active agents are described herein. The method involves dissolving, melting, or suspending a poorly water soluble active agent in one or more molten fatty acids, conjugated fatty acids, (semi-) solid surfactants of high HLB value, and/or hydrophilic polymers. The molten active agent mixture is then suspended and homogenized in a hydrophilic or lipophilic carrier to form microparticles suspended in the hydrophilic or lipophilic carrier. The particles suspended in the hydrophilic or lipophilic carrier can be encapsulated in a hard or soft gelatin or non-gelatin capsule. It is believed that the microparticles produced by the method described above will exhibit enhanced dissolution profiles. In vitro release studies of formulations containing cilostazol and fenofibrate showed 100% dissolution of cilostazol in 15 minutes and over 90% dissolution of fenofibrate in 35 minutes.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: December 30, 2014
    Assignee: Banner Pharmacaps, Inc.
    Inventors: Aqeel Fatmi, Tae Kyoung Kim, Karla E. Madrigal
  • Publication number: 20130323304
    Abstract: Methods for enhancing the release and/or absorption of poorly water soluble active agents are described herein. The method involves dissolving, melting, or suspending a poorly water soluble active agent in one or more molten fatty acids, conjugated fatty acids, (semi-) solid surfactants of high HLB value, and/or hydrophilic polymers. The molten active agent mixture is then suspended and homogenized in a hydrophilic or lipophilic carrier to form microparticles suspended in the hydrophilic or lipophilic carrier. The particles suspended in the hydrophilic or lipophilic carrier can be encapsulated in a hard or soft gelatin or non-gelatin capsule. It is believed that the microparticles produced by the method described above will exhibit enhanced dissolution profiles. In vitro release studies of formulations containing cilostazol and fenofibrate showed 100% dissolution of cilostazol in 15 minutes and over 90% dissolution of fenofibrate in 35 minutes.
    Type: Application
    Filed: August 1, 2013
    Publication date: December 5, 2013
    Applicant: Banner Pharmacaps, Inc.
    Inventors: Aqeel Fatmi, Tae Kyoung Kim, Karla E. Madrigal
  • Patent number: 8524280
    Abstract: Methods for enhancing the release and/or absorption of poorly water soluble active agents are described herein. The method involves dissolving, melting, or suspending a poorly water soluble active agent in one or more molten fatty acids, conjugated fatty acids, (semi-) solid surfactants of high HLB value, and/or hydrophilic polymers. The molten active agent mixture is then suspended and homogenized in a hydrophilic or lipophilic carrier to form microparticles suspended in the hydrophilic or lipophilic carrier. The particles suspended in the hydrophilic or lipophilic carrier can be encapsulated in a hard or soft gelatin or non-gelatin capsule. It is believed that the microparticles produced by the method described above will exhibit enhanced dissolution profiles. In vitro release studies of formulations containing cilostazol and fenofibrate showed 100% dissolution of cilostazol in 15 minutes and over 90% dissolution of fenofibrate in 35 minutes.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 3, 2013
    Assignee: Banner Pharmacaps, Inc.
    Inventors: Aqeel Fatmi, Tae Kyoung Kim, Karla E. Madrigal
  • Publication number: 20110052682
    Abstract: Methods for enhancing the release and/or absorption of poorly water soluble active agents are described herein. The method involves dissolving, melting, or suspending a poorly water soluble active agent in one or more molten fatty acids, conjugated fatty acids, (semi-) solid surfactants of high HLB value, and/or hydrophilic polymers. The molten active agent mixture is then suspended and homogenized in a hydrophilic or lipophilic carrier to form microparticles suspended in the hydrophilic or lipophilic carrier. The particles suspended in the hydrophilic or lipophilic carrier can be encapsulated in a hard or soft gelatin or non-gelatin capsule. It is believed that the microparticles produced by the method described above will exhibit enhanced dissolution profiles. In vitro release studies of formulations containing cilostazol and fenofibrate showed 100% dissolution of cilostazol in 15 minutes and over 90% dissolution of fenofibrate in 35 minutes.
    Type: Application
    Filed: December 15, 2009
    Publication date: March 3, 2011
    Inventors: Aqeel Fatmi, Tae Kyoung Kim, Karla E. Madrigal