Patents by Inventor Karthik Ganesan

Karthik Ganesan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11085069
    Abstract: The present technology provides for an apparatus for detecting polynucleotides in samples, particularly from biological samples. The technology more particularly relates to microfluidic systems that carry out PCR on nucleotides of interest within microfluidic channels, and detect those nucleotides. The apparatus includes a microfluidic cartridge that is configured to accept a plurality of samples, and which can carry out PCR on each sample individually, or a group of, or all of the plurality of samples simultaneously.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: August 10, 2021
    Assignee: HandyLab, Inc.
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Jeff Williams
  • Patent number: 11078523
    Abstract: A microfluidic device includes an input port for inputting a particle-containing liquidic samples into the device, a retention member, and a pressure actuator. The retention member is in communication with the input port and is configured to spatially separate particles of the particle-containing liquidic sample from a first portion of the liquid of the particle containing fluidic sample. The pressure actuator recombines at least some of the separated particles with a subset of the first portion of the liquid separated from the particles. The device can also include a lysing chamber that receives the particles and liquid from the retention member. The lysing chamber thermally lyses the particles to release contents thereof.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: August 3, 2021
    Assignee: HandyLab, Inc.
    Inventors: Kalyan Handique, Gene Parunak, Aaron Kehrer, Betty Wu, Karthik Ganesan
  • Publication number: 20210141724
    Abstract: A heterogeneous memory system is implemented using a low-latency near memory (NM) and a high-latency far memory (FM). Pages in the memory system include NM blocks stored in the NM and FM blocks stored in the FM. A page is assigned to a region in the memory system based on the proportion of NM blocks in the page. When accessing a block, the block address is used to determine a region of the memory system, and a block offset is used to determine whether the block is stored in NM or FM. The memory system may observe memory accesses to determine the access statistics of the page and the block. Based on a page's hotness and access density, the page may be migrated to a different region. Based on a block's hotness, the block may be migrated between NM and FM allocated to the page.
    Type: Application
    Filed: January 22, 2021
    Publication date: May 13, 2021
    Inventors: Lizy John, Jee Ho Ryoo, Hung-Ming Hsu, Karthik Ganesan
  • Publication number: 20210139951
    Abstract: The present technology provides for an apparatus for detecting polynucleotides in samples, particularly from biological samples. The technology more particularly relates to microfluidic systems that carry out PCR on nucleotides of interest within microfluidic channels, and detect those nucleotides. The apparatus includes a microfluidic cartridge that is configured to accept a plurality of samples, and which can carry out PCR on each sample individually, or a group of, or all of the plurality of samples simultaneously.
    Type: Application
    Filed: January 11, 2021
    Publication date: May 13, 2021
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Jeff Williams
  • Publication number: 20210087609
    Abstract: A microfluidic device includes an input port for inputting a particle-containing liquidic samples into the device, a retention member, and a pressure actuator. The retention member is in communication with the input port and is configured to spatially separate particles of the particle-containing liquidic sample from a first portion of the liquid of the particle containing fluidic sample. The pressure actuator recombines at least some of the separated particles with a subset of the first portion of the liquid separated from the particles. The device can also include a lysing chamber that receives the particles and liquid from the retention member. The lysing chamber thermally lyses the particles to release contents thereof.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventors: Kalyan Handique, Gene Parunak, Aaron Kehrer, Betty Wu, Karthik Ganesan
  • Publication number: 20210071234
    Abstract: Systems and methods for performing simultaneous nucleic acid amplification and detection. The systems and methods comprise methods for managing a plurality of protocols in conjunction with directing a sensor array across each of a plurality of reaction chambers. In certain embodiments, the protocols comprise thermocycling profiles and the methods may introduce offsets and duration extensions into the thermocycling profiles to achieve more efficient detection behavior.
    Type: Application
    Filed: September 21, 2020
    Publication date: March 11, 2021
    Inventors: Thomas Catalino Gubatayao, Kalyan Handique, Karthik Ganesan, Daniel M. Drummond
  • Patent number: 10914672
    Abstract: A system and method for isolating and analyzing single cells, including: a substrate having a broad surface; a set of wells defined at the broad surface of the substrate, and a set of channels, defined by the wall, that fluidly couple each well to at least one adjacent well in the set of wells; and fluid delivery module defining an inlet and comprising a plate, removably coupled to the substrate, the plate defining a recessed region fluidly connected to the inlet and facing the broad surface of the substrate, the fluid delivery module comprising a cell capture mode.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: February 9, 2021
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kalyan Handique, Austin Payne, Vishal Sharma, Kyle Gleason, Priyadarshini Gogoi, Karthik Ganesan, Brian Boniface, Will Chow
  • Patent number: 10913061
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: February 9, 2021
    Assignee: HANDYLAB, INC.
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Patent number: 10901894
    Abstract: A heterogeneous memory system is implemented using a low-latency near memory (NM) and a high-latency far memory (FM). Pages in the memory system include NM blocks stored in the NM and FM blocks stored in the FM. A page is assigned to a region in the memory system based on the proportion of NM blocks in the page. When accessing a block, the block address is used to determine a region of the memory system, and a block offset is used to determine whether the block is stored in NM or FM. The memory system may observe memory accesses to determine the access statistics of the page and the block. Based on a page's hotness and access density, the page may be migrated to a different region. Based on a block's hotness, the block may be migrated between NM and FM allocated to the page.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: January 26, 2021
    Assignee: Oracle International Corporation
    Inventors: Lizy John, Jee Ho Ryoo, Hung-Ming Hsu, Karthik Ganesan
  • Patent number: 10904237
    Abstract: Techniques for multifactor authentication as a network service are disclosed. In some embodiments, a system, process, and/or computer program product for multifactor authentication as a network service includes monitoring a session at a firewall, applying an authentication profile based on the new session, and performing an action based on the authentication profile.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: January 26, 2021
    Assignee: Palo Alto Networks, Inc.
    Inventors: Ashwath Sreenivasa Murthy, Karthik Ganesan, Prabhakar M V B R Mangam, Shriram S. Jandhyala, Martin Walter
  • Patent number: 10900066
    Abstract: The present technology provides for an apparatus for detecting polynucleotides in samples, particularly from biological samples. The technology more particularly relates to microfluidic systems that carry out PCR on nucleotides of interest within microfluidic channels, and detect those nucleotides. The apparatus includes a microfluidic cartridge that is configured to accept a plurality of samples, and which can carry out PCR on each sample individually, or a group of, or all of the plurality of samples simultaneously.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: January 26, 2021
    Assignee: HandyLab, Inc.
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Jeff Williams
  • Publication number: 20210010059
    Abstract: The present technology provides for an apparatus for detecting polynucleotides in samples, particularly from biological samples. The technology more particularly relates to microfluidic systems that carry out PCR on nucleotides of interest within microfluidic channels, and detect those nucleotides. The apparatus includes a microfluidic cartridge that is configured to accept a plurality of samples, and which can carry out PCR on each sample individually, or a group of, or all of the plurality of samples simultaneously.
    Type: Application
    Filed: February 11, 2020
    Publication date: January 14, 2021
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Jeff Williams
  • Publication number: 20210003496
    Abstract: A system and method for isolating and analyzing single cells, including: a substrate having a broad surface; a set of wells defined at the broad surface of the substrate, and a set of channels, defined by the wall, that fluidly couple each well to at least one adjacent well in the set of wells; and fluid delivery module defining an inlet and comprising a plate, removably coupled to the substrate, the plate defining a recessed region fluidly connected to the inlet and facing the broad surface of the substrate, the fluid delivery module comprising a cell capture mode.
    Type: Application
    Filed: September 18, 2020
    Publication date: January 7, 2021
    Inventors: Kalyan Handique, Austin Payne, Vishal Sharma, Kyle Gleason, Priyadarshini Gogoi, Karthik Ganesan, Brian Boniface, Will Chow
  • Patent number: 10865437
    Abstract: A microfluidic device includes an input port for inputting a particle-containing liquidic samples into the device, a retention member, and a pressure actuator. The retention member is in communication with the input port and is configured to spatially separate particles of the particle-containing liquidic sample from a first portion of the liquid of the particle containing fluidic sample. The pressure actuator recombines at least some of the separated particles with a subset of the first portion of the liquid separated from the particles. The device can also include a lysing chamber that receives the particles and liquid from the retention member. The lysing chamber thermally lyses the particles to release contents thereof.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: December 15, 2020
    Assignee: HandyLab, Inc.
    Inventors: Kalyan Handique, Gene Parunak, Aaron Kehrer, Betty Wu, Karthik Ganesan
  • Patent number: 10857535
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: December 8, 2020
    Assignee: HANDYLAB, INC.
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Patent number: 10853125
    Abstract: An offload engine may attempt to offload, on behalf of applications, data operations to be performed on a datastream. The offload engine may intercept one or more data operations, such as may be part of a collections API, performed by an application. The data operations and the datastream may be specified and/or provided by the application and, in response, the offload engine may be configured to execute (or attempt to execute) the data operations on the datastream using an analytics accelerating co-processor rather than using a general purpose CPU core. The offload engine may determine whether or not to offload the data operations to the analytics accelerating co-processor. If the offload is unsuccessful or if the offload engine determines that the data operations are not suitable for offloading, the offload engine may then cause the data operations to be performed using general purpose CPU cores on the system.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: December 1, 2020
    Assignee: Oracle International Corporation
    Inventors: Karthik Ganesan, Shrinivas B. Joshi, Yao-Min Chen, Luyang Wang, Ahmed Khawaja
  • Patent number: 10843188
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: November 24, 2020
    Assignee: HANDYLAB, INC.
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Patent number: 10821436
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: November 3, 2020
    Assignee: HANDYLAB, INC.
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Publication number: 20200325523
    Abstract: A microfluidic device includes an input port for inputting a particle-containing liquidic samples into the device, a retention member, and a pressure actuator. The retention member is in communication with the input port and is configured to spatially separate particles of the particle-containing liquidic sample from a first portion of the liquid of the particle containing fluidic sample. The pressure actuator recombines at least some of the separated particles with a subset of the first portion of the liquid separated from the particles. The device can also include a lysing chamber that receives the particles and liquid from the retention member. The lysing chamber thermally lyses the particles to release contents thereof.
    Type: Application
    Filed: June 24, 2020
    Publication date: October 15, 2020
    Inventors: Kalyan Handique, Gene Parunak, Aaron Kehrer, Betty Wu, Karthik Ganesan
  • Publication number: 20200325524
    Abstract: The present technology provides for an apparatus for detecting polynucleotides in samples, particularly from biological samples. The technology more particularly relates to microfluidic systems that carry out PCR on nucleotides of interest within microfluidic channels, and detect those nucleotides. The apparatus includes a microfluidic cartridge that is configured to accept a plurality of samples, and which can carry out PCR on each sample individually, or a group of, or all of the plurality of samples simultaneously.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Jeff Williams