Patents by Inventor Katherine Wright

Katherine Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11763240
    Abstract: Some embodiments provide a non-transitory machine-readable medium that stores a program executable by a device. The program identifies a set of visualizations associated with the user. The program further determines, for each visualization in the set of visualizations, a score associated with changes in the visualization. The program also determines a subset of the set of visualizations based on the set of scores. The program further provides to the user notifications associated with the subset of the set of visualizations.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: September 19, 2023
    Assignee: BUSINESS OBJECTS SOFTWARE LTD
    Inventors: Jiandong Shi, Katherine Wright, Flavia Moser, Ahmet Yoldemir
  • Patent number: 11747421
    Abstract: The present application provides a system and method for quantifying perfusion using a dictionary matching approach. In some aspects, the method comprises performing a predetermined pulse sequence using an MRI system to acquire MRI data from the subject after having delivered a dose of a contrast agent to the subject. The method also includes comparing the MRI data to a dictionary to determine perfusion information, and generating, using the perfusion information, a report indicative of perfusion within the subject.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: September 5, 2023
    Assignee: Case Western Reserve University
    Inventors: Vikas Gulani, Satyam Ghodasara, Katherine Wright, Nicole Seiberlich, Mark A. Griswold
  • Patent number: 11340325
    Abstract: Apparatus, methods, and other embodiments associated with NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. Sampling is performed in response to a diffusion-weighted double-echo pulse sequence. Sampling acquires transient-state signals of the double-echo sequence. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals, and a characterization logic that characterizes a resonant species in the object as a result of comparing acquired signals to reference signals.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: May 24, 2022
    Assignee: Case Western Reserve University
    Inventors: Mark Griswold, Vikas Gulani, Dan Ma, Yun Jiang, Katherine Wright
  • Publication number: 20220114526
    Abstract: Some embodiments provide a non-transitory machine-readable medium that stores a program executable by a device. The program identifies a set of visualizations associated with the user. The program further determines, for each visualization in the set of visualizations, a score associated with changes in the visualization. The program also determines a subset of the set of visualizations based on the set of scores. The program further provides to the user notifications associated with the subset of the set of visualizations.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 14, 2022
    Inventors: Jiandong Shi, Katherine Wright, Flavia Moser, Ahmet Yoldemir
  • Patent number: 11096999
    Abstract: There are provided antigens, vectors encoding the antigens, and antibodies and other binding compounds to the antigens and uses thereof in the prevention or treatment of malaria. In particular, compositions are provided comprising fragments of Reticulocyte-binding protein Homologue 5 (PfRH5). In particular, the invention provides fragments of PfRH5 rationally designed on the basis of the PfRH5 crystal structure, wherein said fragments which lack disordered regions, particularly the flexible N-terminal region and/or flexible central linker.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: August 24, 2021
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Simon Draper, Matthew Higgins, Katherine Wright, Alexander Douglas
  • Patent number: 10859654
    Abstract: A method for determining quantitative parameters for dynamic contrast-enhanced MR data includes acquiring a set of contrast-enhanced MR data for a region of interest using a T1-weighted pulse sequence, generating at least one contrast concentration curve based on the set of contrast-enhanced MR data, accessing a comprehensive dictionary of contrast concentration curves and generating a grouped dictionary that has a plurality of groups based on the comprehensive dictionary. Each group includes a plurality of correlated contrast concentration curves and a group representative signal for the group. The method also includes comparing a contrast concentration curve with the group representative signal of each group to select a group, comparing the contrast concentration curve to the plurality of correlated contrast concentration curves in the selected group to identify a set of quantitative parameters for the concentration curve and generating a report including the set of quantitative parameter.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: December 8, 2020
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Vikas Gulani, Satyam Ghodasara, Katherine Wright, Nicole Seiberlich, Mark A. Griswold
  • Patent number: 10693997
    Abstract: Embodiments of the present disclosure pertain to network based machine learning generated simulations. In one embodiment, the present disclosure includes a computer implemented method comprising sending first code comprising a programmable calculator from a server system to a client system across a network. A data request is sent to a database, the data request configured to retrieve data from the database comprising a plurality of fields and a target field. The retrieved data is processed using a machine learning algorithm to produce a weight for each field of the plurality of fields and a scoring data structure. The fields and the scoring data structure are sent to the client system across the network. A user selects values for the plurality of fields and the programmable calculator is configured based on the scoring data structure to generate a simulated value for the target field based on the user selected values.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: June 23, 2020
    Assignee: SAP SE
    Inventors: Katherine Wright, Sepideh Hashtroodi, Teresa Hsin Yi Su, Flavia Moser, Sajjad Gholami, Zeyu Ni, Geoffrey Neil Peters
  • Publication number: 20190353736
    Abstract: The present application provides a system and method for quantifying perfusion using a dictionary matching approach. In some aspects, the method comprises performing a predetermined pulse sequence using an MRI system to acquire MRI data from the subject after having delivered a dose of a contrast agent to the subject. The method also includes comparing the MRI data to a dictionary to determine perfusion information, and generating, using the perfusion information, a report indicative of perfusion within the subject.
    Type: Application
    Filed: May 20, 2019
    Publication date: November 21, 2019
    Inventors: Vikas Gulani, Satyam Ghodasara, Katherine Wright, Nicole Seiberlich, Mark A. Griswold
  • Publication number: 20190285712
    Abstract: A method for determining quantitative parameters for dynamic contrast-enhanced MR data includes acquiring a set of contrast-enhanced MR data for a region of interest using a T1-weighted pulse sequence, generating at least one contrast concentration curve based on the set of contrast-enhanced MR data, accessing a comprehensive dictionary of contrast concentration curves and generating a grouped dictionary that has a plurality of groups based on the comprehensive dictionary. Each group includes a plurality of correlated contrast concentration curves and a group representative signal for the group. The method also includes comparing a contrast concentration curve with the group representative signal of each group to select a group, comparing the contrast concentration curve to the plurality of correlated contrast concentration curves in the selected group to identify a set of quantitative parameters for the concentration curve and generating a report including the set of quantitative parameter.
    Type: Application
    Filed: March 12, 2019
    Publication date: September 19, 2019
    Inventors: Vikas Gulani, Satyam Ghodasara, Katherine Wright, Nicole Seiberlich, Mark A. Griswold
  • Publication number: 20190265322
    Abstract: Apparatus, methods, and other embodiments associated with NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. Sampling is performed in response to a diffusion-weighted double-echo pulse sequence. Sampling acquires transient-state signals of the double-echo sequence. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals, and a characterization logic that characterizes a resonant species in the object as a result of comparing acquired signals to reference signals.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 29, 2019
    Inventors: Mark A. Griswold, Vikas Gulani, Dan Ma, Yun Jiang, Katherine Wright
  • Patent number: 10379189
    Abstract: Embodiments associated with combined magnetic resonance angiography and perfusion (MRAP) and nuclear magnetic resonance (NMR) fingerprinting are described. One example apparatus repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The apparatus includes a signal logic that produces an NMR signal evolution from the NMR signals and a characterization logic that characterizes a resonant species in the object as a result of comparing acquired signals to reference signals. The apparatus includes an MRAP logic that simultaneously performs MR angiography and produces quantitative perfusion maps. A multi-factor MR bio-imaging panel is produced from a combination of the data provided by the MRAP and NMR fingerprinting. Diagnoses may be made from the multi-factor MR bio-imaging panel.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: August 13, 2019
    Assignee: Case Western Reserve University
    Inventors: Vikas Gulani, Mark Griswold, Dan Ma, Katherine Wright, Nicole Seiberlich
  • Publication number: 20190191009
    Abstract: Embodiments of the present disclosure pertain to network based machine learning generated simulations. In one embodiment, the present disclosure includes a computer implemented method comprising sending first code comprising a programmable calculator from a server system to a client system across a network. A data request is sent to a database, the data request configured to retrieve data from the database comprising a plurality of fields and a target field. The retrieved data is processed using a machine learning algorithm to produce a weight for each field of the plurality of fields and a scoring data structure. The fields and the scoring data structure are sent to the client system across the network. A user selects values for the plurality of fields and the programmable calculator is configured based on the scoring data structure to generate a simulated value for the target field based on the user selected values.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Applicant: SAP SE
    Inventors: Katherine Wright, Sepideh Hashtroodi, Teresa Hsin Yi Su, Flavia Moser, Sajjad Gholami, Zeyu Ni, Geoffrey Neil Peters
  • Patent number: 10281547
    Abstract: Apparatus, methods, and other embodiments associated with NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. Sampling is performed in response to a diffusion-weighted double-echo pulse sequence. Sampling acquires transient-state signals of the double-echo sequence. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals, and a characterization logic that characterizes a resonant species in the object as a result of comparing acquired signals to reference signals.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: May 7, 2019
    Assignee: Case Western Reserve University
    Inventors: Mark Griswold, Vikas Gulani, Dan Ma, Yun Jiang, Katherine Wright
  • Patent number: 10147314
    Abstract: Example apparatus and methods provide improved spatial and temporal resolution over conventional magnetic resonance renography (MRR). Example apparatus and methods reconstruct under-sampled three-dimensional (3D) data associated with nuclear magnetic resonance (NMR) signals acquired from a kidney. The data is reconstructed using a 3D through-time non-Cartesian generalized auto-calibrating partially parallel acquisitions (GRAPPA) approach. Example apparatus and methods produce a quantized value for a contrast agent concentration in the kidney from a signal intensity in the data based, at least in part, on a two compartment model of the kidney. The two compartment model includes a plasma compartment and a tubular compartment. The quantized value describes a perfusion parameter for the kidney or a filtration parameter for the kidney.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: December 4, 2018
    Assignee: Case Western Reserve University
    Inventors: Vikas Gulani, Katherine Wright, Nicole Seiberlich, Mark Griswold
  • Publication number: 20170209558
    Abstract: There are provided antigens, vectors encoding the antigens, and antibodies and other binding compounds to the antigens and uses thereof in the prevention or treatment of malaria. In particular, compositions are provided comprising fragments of Reticulocyte-binding protein Homologue 5 (PfRH5). In particular, the invention provides fragments of PfRH5 rationally designed on the basis of the PfRH5 crystal structure, wherein said fragments which lack disordered regions, particularly the flexible N-terminal region and/or flexible central linker.
    Type: Application
    Filed: July 30, 2015
    Publication date: July 27, 2017
    Inventors: Simon Draper, Matthew Higgins, Katherine Wright, Alexander Douglas
  • Publication number: 20160025835
    Abstract: Embodiments associated with combined magnetic resonance angiography and perfusion (MRAP) and nuclear magnetic resonance (NMR) fingerprinting are described. One example apparatus repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The apparatus includes a signal logic that produces an NMR signal evolution from the NMR signals and a characterization logic that characterizes a resonant species in the object as a result of comparing acquired signals to reference signals. The apparatus includes an MRAP logic that simultaneously performs MR angiography and produces quantitative perfusion maps. A multi-factor MR bio-imaging panel is produced from a combination of the data provided by the MRAP and NMR fingerprinting. Diagnoses may be made from the multi-factor MR bio-imaging panel.
    Type: Application
    Filed: July 28, 2014
    Publication date: January 28, 2016
    Inventors: Vikas Gulani, Mark Griswold, Dan Ma, Katherine Wright, Nicole Seiberlich
  • Publication number: 20140294734
    Abstract: Example apparatus and methods provide improved spatial and temporal resolution over conventional magnetic resonance renography (MRR). Example apparatus and methods reconstruct under-sampled three-dimensional (3D) data associated with nuclear magnetic resonance (NMR) signals acquired from a kidney. The data is reconstructed using a 3D through-time non-Cartesian generalized auto-calibrating partially parallel acquisitions (GRAPPA) approach. Example apparatus and methods produce a quantized value for a contrast agent concentration in the kidney from a signal intensity in the data based, at least in part, on a two compartment model of the kidney. The two compartment model includes a plasma compartment and a tubular compartment. The quantized value describes a perfusion parameter for the kidney or a filtration parameter for the kidney.
    Type: Application
    Filed: November 20, 2013
    Publication date: October 2, 2014
    Inventors: Vikas Gulani, Katherine Wright, Nicole Seiberlich, Mark Griswold