Patents by Inventor Kathleen B. Reuter

Kathleen B. Reuter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9401443
    Abstract: Photovoltaic devices and methods for preparing a p-type semiconductor generally include electroplating a layer of gallium or a gallium alloy onto a conductive layer by contacting the conductive layer with a plating bath free of complexing agents including a gallium salt, methane sulfonic acid or sodium sulfate and an organic additive comprising at least one nitrogen atom and/or at least one sulfur atom, and a solvent; adjusting a pH of the solution to be less than 2.6 or greater than 12.6. The photovoltaic device includes an impurity in the p-type semiconductor layer selected from the group consisting of arsenic, antimony, bismuth, and mixtures thereof. Various photovoltaic precursor layers for forming CIS, CGS and CIGS p-type semiconductor structures can be formed by electroplating the gallium or gallium alloys in this manner. Also disclosed are processes for forming a thermal interface of gallium or a gallium alloy.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: July 26, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Qiang Huang, Kathleen B. Reuter, Lubomyr T. Romankiw, Raman Vaidyanathan
  • Patent number: 9188578
    Abstract: An anti-retraction capping material is formed on a surface of a nanowire that is located upon a dielectric membrane. A gap is then formed into the anti-retraction capping material and nanowire forming first and second capped nanowire structures of a nanodevice. The nanodevice can be used for recognition tunneling measurements including, for example DNA sequencing. The anti-retraction capping material serves as a mobility barrier to pin, i.e., confine, a nanowire portion of each of the first and second capped nanowire structures in place, allowing long-term structural stability. In some embodiments, interelectrode leakage through solution during recognition tunneling measurements can be minimized.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 17, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Yann A. N. Astier, Jingwei Bai, Satyavolu S. Papa Rao, Kathleen B. Reuter, Joshua T. Smith
  • Patent number: 9097698
    Abstract: An anti-retraction capping material is formed on a surface of a nanowire that is located upon a dielectric membrane. A gap is then formed into the anti-retraction capping material and nanowire forming first and second capped nanowire structures of a nanodevice. The nanodevice can be used for recognition tunneling measurements including, for example DNA sequencing. The anti-retraction capping material serves as a mobility barrier to pin, i.e., confine, a nanowire portion of each of the first and second capped nanowire structures in place, allowing long-term structural stability. In some embodiments, interelectrode leakage through solution during recognition tunneling measurements can be minimized.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: August 4, 2015
    Assignee: International Business Machines Corporation
    Inventors: Yann A. N. Astier, Jingwei Bai, Satyavolu S. Papa Rao, Kathleen B. Reuter, Joshua T. Smith
  • Publication number: 20150137069
    Abstract: An anti-retraction capping material is formed on a surface of a nanowire that is located upon a dielectric membrane. A gap is then formed into the anti-retraction capping material and nanowire forming first and second capped nanowire structures of a nanodevice. The nanodevice can be used for recognition tunneling measurements including, for example DNA sequencing. The anti-retraction capping material serves as a mobility barrier to pin, i.e., confine, a nanowire portion of each of the first and second capped nanowire structures in place, allowing long-term structural stability. In some embodiments, interelectrode leakage through solution during recognition tunneling measurements can be minimized.
    Type: Application
    Filed: January 29, 2015
    Publication date: May 21, 2015
    Inventors: Yann A.N. Astier, Jingwei Bai, Satyavolu S. Papa Rao, Kathleen B. Reuter, Joshua T. Smith
  • Publication number: 20140374695
    Abstract: An anti-retraction capping material is formed on a surface of a nanowire that is located upon a dielectric membrane. A gap is then formed into the anti-retraction capping material and nanowire forming first and second capped nanowire structures of a nanodevice. The nanodevice can be used for recognition tunneling measurements including, for example DNA sequencing. The anti-retraction capping material serves as a mobility barrier to pin, i.e., confine, a nanowire portion of each of the first and second capped nanowire structures in place, allowing long-term structural stability. In some embodiments, interelectrode leakage through solution during recognition tunneling measurements can be minimized.
    Type: Application
    Filed: September 30, 2013
    Publication date: December 25, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann A. N. Astier, Jingwei Bai, Satyavolu S. Papa Rao, Kathleen B. Reuter, Joshua T. Smith
  • Publication number: 20130269780
    Abstract: The present invention relates to a method for fabricating a thin layer made of a alloy and having photovoltaic properties. The method according to the invention comprises first steps of: a) depositing an adaptation layer (MO) on a substrate (SUB), b) depositing at least one layer (SEED) comprising at least elements I and/or III, on said adaptation layer. The adaptation layer is deposited under near vacuum conditions and step b) comprises a first operation of depositing a first layer of I and/or III elements, under same conditions as the deposition of the adaptation layer, without exposing to air the adaptation layer.
    Type: Application
    Filed: December 20, 2011
    Publication date: October 17, 2013
    Applicant: NEXCIS
    Inventors: Pierre-Philippe Grand, Jesus Salvadoe Jaime Ferrer, Emmanuel Roche, Hariklia Deligianni, Raman Vaidyanathan, Kathleen B. Reuter, Qiang Huang, Lubomyr Romankiw, Maurice Mason, Donna S. Zupanski-Nielsen
  • Publication number: 20130008798
    Abstract: Photovoltaic devices and methods for preparing a p-type semiconductor generally include electroplating a layer of gallium or a gallium alloy onto a conductive layer by contacting the conductive layer with a plating bath free of complexing agents including a gallium salt, methane sulfonic acid or sodium sulfate and an organic additive comprising at least one nitrogen atom and/or at least one sulfur atom, and a solvent; adjusting a pH of the solution to be less than 2.6 or greater than 12.6. The photovoltaic device includes an impurity in the p-type semiconductor layer selected from the group consisting of arsenic, antimony, bismuth, and mixtures thereof. Various photovoltaic precursor layers for forming CIS, CGS and CIGS p-type semiconductor structures can be formed by electroplating the gallium or gallium alloys in this manner. Also disclosed are processes for forming a thermal interface of gallium or a gallium alloy.
    Type: Application
    Filed: September 5, 2012
    Publication date: January 10, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Qiang Huang, Kathleen B. Reuter, Lubomyr T. Romankiw, Raman Vaidyanathan
  • Publication number: 20120055612
    Abstract: Photovoltaic devices and methods for preparing a p-type semiconductor layer for the photovoltaic devices generally include electroplating a layer of gallium or a gallium alloy onto a conductive layer by contacting the conductive layer with a plating bath free of complexing agents including a gallium salt, methane sulfonic acid or sodium sulfate and an organic additive comprising at least one nitrogen atom and/or at least one sulfur atom, and a solvent; adjusting a pH of the solution to be less than 2.6 or greater than 12.6. The photovoltaic device includes an impurity in the p-type semiconductor layer selected from the group consisting of arsenic, antimony, bismuth, and mixtures thereof. Various photovoltaic precursor layers for forming CIS, CGS and CIGS p-type semiconductor structures can be formed by electroplating the gallium or gallium alloys in this manner. Also disclosed are processes for forming a thermal interface of gallium or a gallium alloy with the electroplating process.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 8, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Qiang Huang, Kathleen B. Reuter, Lubomyr T. Romankiw, Raman Vaidyanathan