Patents by Inventor Kathleen Blanche Morey

Kathleen Blanche Morey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11371120
    Abstract: A high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: about 3.5 to about 4.9% of Al, about 12.2 to about 16.0% of W, about 24.5 to about 32.0% Ni, about 6.5% to about 10.0% Cr, about 5.9% to about 11.0% Ta, and the balance Co and incidental impurities. A method of making an article having high-temperature strength, cyclic oxidation resistance and corrosion resistance is disclosed. The method includes forming a high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy as described herein; forming an article from the alloy; solution-treating the alloy by a solution heat treatment; and aging the alloy by providing at least one aging heat treatment at an aging temperature that is less than the gamma-prime solvus temperature, wherein the alloy is configured to form a continuous, protective, adherent oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Grant
    Filed: March 10, 2019
    Date of Patent: June 28, 2022
    Assignee: General Electric Company
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, Jr., Kathleen Blanche Morey, Pazhayannur Subramanian
  • Patent number: 11156106
    Abstract: A method of controlling an extent of a thermal barrier coating (TBC) sheet spall and a hot gas path (HGP) component are disclosed. The method provides an HGP component having a body with an exterior surface. Controlling the extent of the TBC sheet spall includes forming a TBC over a selected portion of the exterior surface of the body. The TBC includes a plurality of segments in a cellular pattern. Each segment is defined by one or more slots in the TBC, and each segment has a predefined area such that the extent of the TBC sheet spall is limited by the predefined area of each of the plurality of segments that constitute the TBC sheet spall.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: October 26, 2021
    Assignee: General Electric Company
    Inventors: Jon Conrad Schaeffer, David Vincent Bucci, Canan Uslu Hardwicke, Srikanth Chandrudu Kottilingam, Kathleen Blanche Morey, Lacey Lynn Schwab
  • Patent number: 10948820
    Abstract: A method for protecting a coating on a surface of a component is provided. The method includes a coating step that coats at least a portion of the component with a ceramic slurry. A projecting step projects a pattern of light onto the component with a lithographic process to expose and solidify a ceramic layer. A removing step removes unexposed portions of the ceramic slurry from the component. The ceramic layer comprises multiple stress raising elements or multiple anchoring elements.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: March 16, 2021
    Assignee: General Electric Company
    Inventors: Lacey Lynn Schwab, Kathleen Blanche Morey
  • Publication number: 20200319553
    Abstract: A method for protecting a coating on a surface of a component is provided. The method includes a coating step that coats at least a portion of the component with a ceramic slurry. A projecting step projects a pattern of light onto the component with a lithographic process to expose and solidify a ceramic layer. A removing step removes unexposed portions of the ceramic slurry from the component. The ceramic layer comprises multiple stress raising elements or multiple anchoring elements.
    Type: Application
    Filed: April 3, 2019
    Publication date: October 8, 2020
    Applicant: General Electric Company
    Inventors: Lacey Lynn Schwab, Kathleen Blanche Morey
  • Publication number: 20200256201
    Abstract: A method of controlling an extent of a thermal barrier coating (TBC) sheet spall and a hot gas path (HGP) component are disclosed. The method provides an HGP component having a body with an exterior surface. Controlling the extent of the TBC sheet spall includes forming a TBC over a selected portion of the exterior surface of the body. The TBC includes a plurality of segments in a cellular pattern. Each segment is defined by one or more slots in the TBC, and each segment has a predefined area such that the extent of the TBC sheet spall is limited by the predefined area of each of the plurality of segments that constitute the TBC sheet spall.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 13, 2020
    Inventors: Jon Conrad Schaeffer, David Vincent Bucci, Canan Uslu Hardwicke, Srikanth Chandrudu Kottilingam, Kathleen Blanche Morey, Lacey Lynn Schwab
  • Publication number: 20190203323
    Abstract: A high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: about 3.5 to about 4.9% of Al, about 12.2 to about 16.0% of W, about 24.5 to about 32.0% Ni, about 6.5% to about 10.0% Cr, about 5.9% to about 11.0% Ta, and the balance Co and incidental impurities. A method of making an article having high-temperature strength, cyclic oxidation resistance and corrosion resistance is disclosed. The method includes forming a high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy as described herein; forming an article from the alloy; solution-treating the alloy by a solution heat treatment; and aging the alloy by providing at least one aging heat treatment at an aging temperature that is less than the gamma-prime solvus temperature, wherein the alloy is configured to form a continuous, protective, adherent oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Application
    Filed: March 10, 2019
    Publication date: July 4, 2019
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, JR., Kathleen Blanche Morey, Pazhayannur Subramanian
  • Patent number: 10227678
    Abstract: A high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: about 3.5 to about 4.9% of Al, about 12.2 to about 16.0% of W, about 24.5 to about 32.0% Ni, about 6.5% to about 10.0% Cr, about 5.9% to about 11.0% Ta, and the balance Co and incidental impurities. A method of making an article having high-temperature strength, cyclic oxidation resistance and corrosion resistance is disclosed. The method includes forming a high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy as described herein; forming an article from the alloy; solution-treating the alloy by a solution heat treatment; and aging the alloy by providing at least one aging heat treatment at an aging temperature that is less than the gamma-prime solvus temperature, wherein the alloy is configured to form a continuous, protective, adherent oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: March 12, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, Jr., Kathleen Blanche Morey, Pazhayannur Subramanian
  • Patent number: 9273559
    Abstract: Embodiments of the invention relate generally to turbine blades and, more particularly, to the formation of cooling channels on a surface of a turbine blade and turbine blades including such cooling channels. In one embodiment, the invention provides a method of forming a cooling channel along a surface of a turbine blade, the method comprising: applying a first mask material to a first portion of a surface of a turbine blade; forming a first barrier layer atop the first mask material and atop a second portion of the surface of the turbine blade; removing the first mask material and the barrier layer atop the first mask material to expose the first portion of the surface of the turbine blade; and etching the first portion of the surface of the turbine blade to form a cooling channel along the surface of the turbine blade.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: March 1, 2016
    Assignee: General Electric Company
    Inventors: David Bruce Knorr, Kathleen Blanche Morey
  • Patent number: 9109291
    Abstract: A cold spray coating process is disclosed. The cold spray coating process includes positioning a cold spray nozzle relative to a bearing assembly, rotating the bearing assembly, and directing a powdered babbitt material through the cold spray nozzle, to a surface of the rotating bearing assembly. The powdered babbitt material adheres to the surface of the rotating bearing assembly, forming a coating on the surface. Another cold spray coating process includes positioning the cold spray nozzle relative to a bearing assembly, rotating the cold spray nozzle, and directing a powdered babbitt material through the cold spray nozzle, to a surface of the bearing assembly. The powdered babbitt material adheres to the surface, the rotating of the cold spray nozzle forming a coating on the surface. Another cold spray coating process includes monitoring properties of the coating on the surface of the bearing assembly with a coating monitor.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: August 18, 2015
    Assignee: General Electric Company
    Inventors: Gary Austin Lamberton, Kathleen Blanche Morey, Andrew Batton Witney
  • Patent number: 9034247
    Abstract: A cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: greater than about 4 % of Al, about 10 to about 20 % of W, about 10 to about 40 % Ni, about 5 to 20 % Cr and the balance Co and incidental impurities. The alloy has a microstructure that is substantially free of a CoAl phase having a B2 crystal structure and configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment. A method of making an article of the alloy includes: selecting the alloy; forming an article from the alloy; solution-treating the alloy; and aging the alloy to form an alloy microstructure that is substantially free of a CoAl phase having a B2 crystal structure, wherein the alloy is configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 19, 2015
    Assignee: General Electric Company
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, Jr., Kathleen Blanche Morey, Jon Conrad Schaeffer, Pazhayannur Subramanian
  • Publication number: 20140349007
    Abstract: A cold spray coating process is disclosed. The cold spray coating process includes positioning a cold spray nozzle relative to a bearing assembly, rotating the bearing assembly, and directing a powdered babbitt material through the cold spray nozzle, to a surface of the rotating bearing assembly. The powdered babbitt material adheres to the surface of the rotating bearing assembly, forming a coating on the surface. Another cold spray coating process includes positioning the cold spray nozzle relative to a bearing assembly, rotating the cold spray nozzle, and directing a powdered babbitt material through the cold spray nozzle, to a surface of the bearing assembly. The powdered babbitt material adheres to the surface, the rotating of the cold spray nozzle forming a coating on the surface. Another cold spray coating process includes monitoring properties of the coating on the surface of the bearing assembly with a coating monitor.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 27, 2014
    Inventors: Gary Austin LAMBERTON, Kathleen Blanche MOREY, Andrew Batton WITNEY
  • Patent number: 8870523
    Abstract: According to one aspect of the invention, a method for manufacturing a hot gas path component of a turbine is provided, the method including forming cooling channels in a surface of a member. The method also includes disposing a layer on the surface of the member to enclose the cooling channels, the layer being disposed on a portion of the member to be cooled and bonding the layer to the surface, wherein bonding comprises heating the member and the layer.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: October 28, 2014
    Assignee: General Electric Company
    Inventors: Srikanth Chandrudu Kottilingam, David Vincent Bucci, Benjamin Paul Lacy, Kathleen Blanche Morey, Brian Lee Tollison, Patrick Thomas Walsh
  • Patent number: 8857055
    Abstract: A process is provided for forming shaped air holes, such as for use in turbine blades. Aspects of the disclosure relate to forming shaped portions of air holes using a short pulse laser, forming a metered hole corresponding to each shaped portion, and separately finishing the shaped portion using a short-pulse laser. In other embodiments, the order of these operations may be varied, such as to form the shaped portions and to finish the shaped portions using the short-pulse laser prior to forming the corresponding metered holes.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: October 14, 2014
    Assignee: General Electric Company
    Inventors: Bin Wei, Jon Conrad Schaeffer, Ronald Scott Bunker, Wenwu Zhang, Kathleen Blanche Morey, Jane Marie Lipkin, Benjamin Paul Lacy, Wilbur Douglas Scheidt
  • Publication number: 20140255206
    Abstract: Embodiments of the invention relate generally to turbine blades and, more particularly, to the formation of cooling channels on a surface of a turbine blade and turbine blades including such cooling channels. In one embodiment, the invention provides a method of forming a cooling channel along a surface of a turbine blade, the method comprising: applying a first mask material to a first portion of a surface of a turbine blade; forming a first barrier layer atop the first mask material and atop a second portion of the surface of the turbine blade; removing the first mask material and the barrier layer atop the first mask material to expose the first portion of the surface of the turbine blade; and etching the first portion of the surface of the turbine blade to form a cooling channel along the surface of the turbine blade.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Bruce Knorr, Kathleen Blanche Morey
  • Patent number: 8578696
    Abstract: Disclosed is a turbulated arrangement of thermoelectric elements for utilizing waste heat generated from a turbine engine. The turbulated arrangement of thermoelectric elements is located within the turbine casing at a heat exhaust end of the turbine engine. The turbulated arrangement of thermoelectric elements convert heat exhaust generated from the turbine engine into electrical energy. In one embodiment, the electrical energy generated from the turbulated arrangement of thermoelectric elements can be used to power electrical components located about the turbine engine.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: November 12, 2013
    Assignee: General Electric Company
    Inventors: Hariharan Sundaram, Mayur Abhay Keny, Kathleen Blanche Morey
  • Publication number: 20130139510
    Abstract: According to one aspect of the invention, a method for manufacturing a hot gas path component of a turbine is provided, the method including forming cooling channels in a surface of a member. The method also includes disposing a layer on the surface of the member to enclose the cooling channels, the layer being disposed on a portion of the member to be cooled and bonding the layer to the surface, wherein bonding comprises heating the member and the layer.
    Type: Application
    Filed: March 7, 2011
    Publication date: June 6, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Srikanth Chandrudu Kottilingam, David Vincent Bucci, Benjamin Paul Lacy, Kathleen Blanche Morey, Brian Lee Tollison, Patrick Thomas Walsh
  • Publication number: 20120312434
    Abstract: A high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: about 3.5 to about 4.9% of Al, about 12.2 to about 16.0% of W, about 24.5 to about 32.0% Ni, about 6.5% to about 10.0% Cr, about 5.9% to about 11.0% Ta, and the balance Co and incidental impurities. A method of making an article having high-temperature strength, cyclic oxidation resistance and corrosion resistance is disclosed. The method includes forming a high-temperature, high-strength, oxidation-resistant cobalt-nickel base alloy as described herein; forming an article from the alloy; solution-treating the alloy by a solution heat treatment; and aging the alloy by providing at least one aging heat treatment at an aging temperature that is less than the gamma-prime solvus temperature, wherein the alloy is configured to form a continuous, protective, adherent oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 13, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, JR., Kathleen Blanche Morey, Pazhayannur Subramanian
  • Publication number: 20120312426
    Abstract: A cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: greater than about 4% of Al, about 10 to about 20% of W, about 10 to about 40% Ni, about 5 to 20% Cr and the balance Co and incidental impurities. The alloy has a microstructure that is substantially free of a CoAl phase having a B2 crystal structure and configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment. A method of making an article of the alloy includes: selecting the alloy; forming an article from the alloy; solution-treating the alloy; and aging the alloy to form an alloy microstructure that is substantially free of a CoAl phase having a B2 crystal structure, wherein the alloy is configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 13, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, JR., Kathleen Blanche Morey, Jon Conrad Schaeffer, Pazhayannur Subramanian
  • Publication number: 20120193126
    Abstract: A method for depositing a powder metal onto a surface of the substrate and a substrate with conductive elements provided on a surface of the substrate are disclosed. The conductive elements are formed by cold spray depositing at least one layer of powder metal onto the surface of the substrate to form at least one conductive element on the surface of the article.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kathleen Blanche MOREY, Yuk-Chiu LAU, Jon Conrad SCHAEFFER, Joshua Lee MARGOLIES
  • Publication number: 20120031067
    Abstract: Disclosed is a turbulated arrangement of thermoelectric elements for utilizing waste heat generated from a turbine engine. The turbulated arrangement of thermoelectric elements is located within the turbine casing at a heat exhaust end of the turbine engine. The turbulated arrangement of thermoelectric elements convert heat exhaust generated from the turbine engine into electrical energy. In one embodiment, the electrical energy generated from the turbulated arrangement of thermoelectric elements can be used to power electrical components located about the turbine engine.
    Type: Application
    Filed: August 3, 2010
    Publication date: February 9, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hariharan Sundaram, Mayur Abhay Keny, Kathleen Blanche Morey