Patents by Inventor Kathryn Merced Kelchner

Kathryn Merced Kelchner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11832533
    Abstract: Methods and apparatuses for forming an encapsulation bilayer over a chalcogenide material on a semiconductor substrate are provided. Methods involve forming a bilayer including a barrier layer directly on chalcogenide material deposited using pulsed plasma plasma-enhanced chemical vapor deposition (PP-PECVD) and an encapsulation layer over the barrier layer deposited using plasma-enhanced atomic layer deposition (PEALD). In various embodiments, the barrier layer is formed using a halogen-free silicon precursor and the encapsulation layer deposited by PEALD is formed using a halogen-containing silicon precursor and a hydrogen-free nitrogen-containing reactant.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: November 28, 2023
    Assignee: Lam Research Corporation
    Inventors: James Samuel Sims, Andrew John McKerrow, Meihua Shen, Thorsten Lill, Shane Tang, Kathryn Merced Kelchner, John Hoang, Alexander Dulkin, Danna Qian, Vikrant Rai
  • Publication number: 20220115592
    Abstract: Methods and apparatuses for forming an encapsulation bilayer over a chalcogenide material on a semiconductor substrate are provided. Methods involve forming a bilayer including a barrier layer directly on chalcogenide material deposited using pulsed plasma plasma-enhanced chemical vapor deposition (PP-PECVD) and an encapsulation layer over the barrier layer deposited using plasma-enhanced atomic layer deposition (PEALD). In various embodiments, the barrier layer is formed using a halogen-free silicon precursor and the encapsulation layer deposited by PEALD is formed using a halogen-containing silicon precursor and a hydrogen-free nitrogen-containing reactant.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Inventors: James Samuel Sims, Andrew John McKerrow, Meihua Shen, Thorsten Lill, Shane Tang, Kathryn Merced Kelchner, John Hoang, Alexander Dulkin, Danna Qian, Vikrant Rai
  • Patent number: 11239420
    Abstract: Methods and apparatuses for forming an encapsulation bilayer over a chalcogenide material on a semiconductor substrate are provided. Methods involve forming a bilayer including a barrier layer directly on chalcogenide material deposited using pulsed plasma plasma-enhanced chemical vapor deposition (PP-PECVD) and an encapsulation layer over the barrier layer deposited using plasma-enhanced atomic layer deposition (PEALD). In various embodiments, the barrier layer is formed using a halogen-free silicon precursor and the encapsulation layer deposited by PEALD is formed using a halogen-containing silicon precursor and a hydrogen-free nitrogen-containing reactant.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: February 1, 2022
    Assignee: Lam Research Corporation
    Inventors: James Samuel Sims, Andrew John McKerrow, Meihua Shen, Thorsten Lill, Shane Tang, Kathryn Merced Kelchner, John Hoang, Alexander Dulkin, Danna Qian, Vikrant Rai
  • Publication number: 20200066987
    Abstract: Methods and apparatuses for forming an encapsulation bilayer over a chalcogenide material on a semiconductor substrate are provided. Methods involve forming a bilayer including a barrier layer directly on chalcogenide material deposited using pulsed plasma plasma-enhanced chemical vapor deposition (PP-PECVD) and an encapsulation layer over the barrier layer deposited using plasma-enhanced atomic layer deposition (PEALD). In various embodiments, the barrier layer is formed using a halogen-free silicon precursor and the encapsulation layer deposited by PEALD is formed using a halogen-containing silicon precursor and a hydrogen-free nitrogen-containing reactant.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 27, 2020
    Inventors: James Samuel Sims, Andrew John McKerrow, Meihua Shen, Thorsten Lill, Shane Tang, Kathryn Merced Kelchner, John Hoang, Alexander Dulkin, Danna Qian, Vikrant Rai
  • Patent number: 10020188
    Abstract: A method of depositing ALD films on semiconductor substrates processed in a micro-volume of a plasma enhanced atomic layer deposition (PEALD) reaction chamber wherein a single semiconductor substrate is supported on a ceramic surface of a pedestal and process gas is introduced through gas outlets in a ceramic surface of a showerhead into a reaction zone above the semiconductor substrate, includes (a) cleaning the ceramic surfaces of the pedestal and showerhead with a fluorine plasma such that aluminum-rich byproducts are formed on the ceramic surfaces, (b) depositing a conformal halide-free atomic layer deposition (ALD) oxide undercoating on the ceramic surfaces so as to cover the aluminum-rich byproducts, (c) depositing a pre-coating on the halide-free ALD oxide undercoating, and (d) processing a batch of semiconductor substrates by transferring each semiconductor substrate into the reaction chamber and depositing a film on the semiconductor substrate supported on the ceramic surface of the pedestal.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 10, 2018
    Assignee: LAM RESEARCH CORPORATION
    Inventors: James S. Sims, Jon Henri, Ramesh Chandrasekharan, Andrew John McKerrow, Seshasayee Varadarajan, Kathryn Merced Kelchner
  • Publication number: 20180102245
    Abstract: A method of depositing ALD films on semiconductor substrates processed in a micro-volume of a plasma enhanced atomic layer deposition (PEALD) reaction chamber wherein a single semiconductor substrate is supported on a ceramic surface of a pedestal and process gas is introduced through gas outlets in a ceramic surface of a showerhead into a reaction zone above the semiconductor substrate, includes (a) cleaning the ceramic surfaces of the pedestal and showerhead with a fluorine plasma such that aluminum-rich byproducts are formed on the ceramic surfaces, (b) depositing a conformal halide-free atomic layer deposition (ALD) oxide undercoating on the ceramic surfaces so as to cover the aluminum-rich byproducts, (c) depositing a pre-coating on the halide-free ALD oxide undercoating, and (d) processing a batch of semiconductor substrates by transferring each semiconductor substrate into the reaction chamber and depositing a film on the semiconductor substrate supported on the ceramic surface of the pedestal.
    Type: Application
    Filed: November 20, 2017
    Publication date: April 12, 2018
    Applicant: LAM RESEARCH CORPORATION
    Inventors: James S. Sims, Jon Henri, Ramesh Chandrasekharan, Andrew John McKerrow, Seshasayee Varadarajan, Kathryn Merced Kelchner
  • Patent number: 9865455
    Abstract: Provided are methods and apparatuses for depositing a nitride film using one or more plasma-enhanced atomic layer deposition cycles and one or more thermal atomic layer deposition cycles in a single reactor. The number of thermal atomic layer deposition cycles can be equal to or greater than the number of plasma-enhanced atomic layer deposition cycles. Incorporation of thermal atomic layer deposition cycles with plasma-enhanced atomic layer deposition cycles can allow for greater fine-tuning of properties of the nitride film. In some implementations, the nitride film is a silicon nitride film. The silicon nitride film can be fine-tuned to allow for a more silicon-rich film with a greater refractive index. In some implementations, the plasma-enhanced atomic layer deposition cycles and the thermal atomic layer deposition cycles can be maintained at the same wafer temperature.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: January 9, 2018
    Assignee: Lam Research Corporation
    Inventors: James Samuel Sims, Kathryn Merced Kelchner
  • Patent number: 9824884
    Abstract: A method of depositing silicon nitride films on semiconductor substrates processed in a micro-volume of a plasma enhanced atomic layer deposition (PEALD) reaction chamber wherein a single semiconductor substrate is supported on a ceramic surface of a pedestal and process gas is introduced through gas outlets in a ceramic surface of a showerhead into a reaction zone above the semiconductor substrate, includes (a) cleaning the ceramic surfaces of the pedestal and showerhead with a fluorine plasma, (b) depositing a halide-free atomic layer deposition (ALD) oxide undercoating on the ceramic surfaces, (c) depositing a precoating of ALD silicon nitride on the halide-free ALD oxide undercoating, and (d) processing a batch of semiconductor substrates by transferring each semiconductor substrate into the reaction chamber and depositing a film of ALD silicon nitride on the semiconductor substrate supported on the ceramic surface of the pedestal.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: November 21, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: James S. Sims, Jon Henri, Ramesh Chandrasekharan, Andrew John McKerrow, Seshasayee Varadarajan, Kathryn Merced Kelchner