Patents by Inventor Kathryn Y. Cole

Kathryn Y. Cole has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9267084
    Abstract: Methods are provided for hydrotreating high nitrogen feeds with improved results for nitrogen removal, aromatic saturation, and/or sulfur removal. The method includes hydrotreating the feed with a supported hydrotreating catalyst followed by a bulk metal catalyst, the hydrotreated effluent of which can be suitable for use as a feed to an FCC reactor.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: February 23, 2016
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William J. Novak, Kathryn Y. Cole, Patrick L. Hanks, Timothy L. Hilbert
  • Patent number: 8816141
    Abstract: Processes are provided for deoxygenation of a biocomponent feedstock with reduced hydrogen consumption. The biocomponent feedstock can be processed under relatively low hydrogen partial pressures and at a relatively low treat gas ratio compared to the hydrogen need of the feedstock. The relatively low pressure, relatively low treat gas ratio hydroprocessing can result in reduced production of water and carbon monoxide and in increased production of carbon dioxide compared to relatively higher pressure process conditions.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: August 26, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kathryn Y. Cole, Patrick L. Hanks, William E. Lewis
  • Patent number: 8785701
    Abstract: Processes are provided for producing a diesel fuel product having a sulfur content of 10 ppm by weight or less from feed sources that include up to 50% by weight of a biocomponent feedstock. The biocomponent feedstock is co-processed with a heavy oil feed in a severe hydrotreating stage. The product from the severe hydrotreatment stage is fractionated to separate out a diesel boiling range fraction, which is then separately hydrotreated.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: July 22, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kathryn Y. Cole, William E. Lewis
  • Patent number: 8686203
    Abstract: A process for preparing fuels, such as diesel fuels or jet fuels, by hydrotreating vegetable oils or fatty acid derivatives that may be applied to existing equipment for treating fossil fuels. The process comprises feeding hydrotreating a combined oxygenate feed stream, such as FAME, and a hydrocarbon feed stream until not more than 86 wt % of the esters in the oxygenate feed stream are converted to hydrocarbons, and optionally further hydrotreating the product stream within at least a second hydrotreatment reaction zone until at least 90 wt % of the esters in the oxygenate feed stream are converted to hydrocarbons, before removing and separating a hydrocarbon stream suitable for use as fuel.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: April 1, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Patrick L. Hanks, Kathryn Y. Cole, William E. Lewis
  • Publication number: 20140048448
    Abstract: Methods are provided for hydrotreating high nitrogen feeds with improved results for nitrogen removal, aromatic saturation, and/or sulfur removal. The method includes hydrotreating the feed with a supported hydrotreating catalyst followed by a bulk metal catalyst, the hydrotreated effluent of which can be suitable for use as a feed to an FCC reactor.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 20, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: William J. NOVAK, Kathryn Y. COLE, Patrick L. HANKS, Timothy L. HILBERT
  • Patent number: 8632675
    Abstract: Processes are provided for producing a diesel fuel product having a sulfur content of 10 ppm by weight or less from feed sources that include up to 50% by weight of a biocomponent feedstock. The biocomponent feedstock is co-processed with a heavy oil feed in a severe hydrotreating stage. The product from the severe hydrotreatment stage is fractionated to separate out a diesel boiling range fraction, which is then separately hydrotreated.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: January 21, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kathryn Y. Cole, William E. Lewis
  • Patent number: 8580108
    Abstract: Methods are provided for hydrotreating high nitrogen feeds with improved results for nitrogen removal, aromatic saturation, and/or sulfur removal. The method includes hydrotreating the feed with a supported hydrotreating catalyst followed by a bulk metal catalyst, the hydrotreated effluent of which can be suitable for use as a feed to an FCC reactor.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: November 12, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William J. Novak, Kathryn Y. Cole, Patrick L. Hanks, Timothy L. Hilbert
  • Publication number: 20110163009
    Abstract: Methods are provided for hydrotreating high nitrogen feeds with improved results for nitrogen removal, aromatic saturation, and/or sulfur removal. The method includes hydrotreating the feed with a supported hydrotreating catalyst followed by a bulk metal catalyst, the hydrotreated effluent of which can be suitable for use as a feed to an FCC reactor.
    Type: Application
    Filed: December 6, 2010
    Publication date: July 7, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: William J. Novak, Kathryn Y. Cole, Patrick L. Hanks, Timothy L. Hilbert
  • Publication number: 20110054230
    Abstract: Processes are provided for deoxygenation of a biocomponent feedstock with reduced hydrogen consumption. The biocomponent feedstock can be processed under relatively low hydrogen partial pressures and at a relatively low treat gas ratio compared to the hydrogen need of the feedstock. The relatively low pressure, relatively low treat gas ratio hydroprocessing can result in reduced production of water and carbon monoxide and in increased production of carbon dioxide compared to relatively higher pressure process conditions.
    Type: Application
    Filed: August 23, 2010
    Publication date: March 3, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kathryn Y. Cole, Patrick L. Hanks, William E. Lewis
  • Publication number: 20100331586
    Abstract: A process for preparing fuels, such as diesel fuels or jet fuels, by hydrotreating vegetable oils or fatty acid derivatives that may be applied to existing equipment for treating fossil fuels. The process comprises feeding hydrotreating a combined oxygenate feed stream, such as FAME, and a hydrocarbon feed stream until not more than 86 wt % of the esters in the oxygenate feed stream are converted to hydrocarbons, and optionally further hydrotreating the product stream within at least a second hydrotreatment reaction zone until at least 90 wt % of the esters in the oxygenate feed stream are converted to hydrocarbons, before removing and separating a hydrocarbon stream suitable for use as fuel.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 30, 2010
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Patrick L. Hanks, Kathryn Y. Cole, William E. Lewis
  • Publication number: 20100176026
    Abstract: Processes are provided for producing a diesel fuel product having a sulfur content of 10 ppm by weight or less from feed sources that include up to 50% by weight of a biocomponent feedstock. The biocomponent feedstock is co-processed with a heavy oil feed in a severe hydrotreating stage. The product from the severe hydrotreatment stage is fractionated to separate out a diesel boiling range fraction, which is then separately hydrotreated.
    Type: Application
    Filed: December 15, 2009
    Publication date: July 15, 2010
    Inventors: Kathryn Y. Cole, William E. Lewis
  • Publication number: 20100175308
    Abstract: Processes are provided for producing a diesel fuel product having a sulfur content of 10 ppm by weight or less from feed sources that include up to 50% by weight of a biocomponent feedstock. The biocomponent feedstock is co-processed with a heavy oil feed in a severe hydrotreating stage. The product from the severe hydrotreatment stage is fractionated to separate out a diesel boiling range fraction, which is then separately hydrotreated.
    Type: Application
    Filed: December 15, 2009
    Publication date: July 15, 2010
    Inventors: Kathryn Y. Cole, William E. Lewis