Patents by Inventor Katsuhiro Tomoda

Katsuhiro Tomoda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060250085
    Abstract: A display apparatus is provided. In the display apparatus, a plurality of light emitting devices are mounted in an orderly arranged state, mending light emitting devices capable of light emission are disposed directly above the failed ones of the plurality of light emitting devices, whereby the portions of the failed ones of the plurality of light emitting devices can be mended (repaired), and it is possible to eliminate dark spot defects in use of the display apparatus.
    Type: Application
    Filed: May 3, 2006
    Publication date: November 9, 2006
    Applicant: Sony Corporation
    Inventors: Masato Doi, Toyoharu Oohata, Katsuhiro Tomoda, Toshihiko Watanabe
  • Patent number: 7049207
    Abstract: A method of isolating semiconductor devices by wet etching of a semiconductor laminate structure formed on a substrate includes providing an etching stop layer having at least two layers between the substrate and the semiconductor laminate structure. The semiconductor laminate structure is etched to isolate the semiconductor devices, the substrate is then etched away, followed by sequentially etching away of the etching stop layer.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: May 23, 2006
    Assignee: Sony Corporation
    Inventor: Katsuhiro Tomoda
  • Patent number: 7049227
    Abstract: An alloying method includes the steps of forming a metal layer on a semiconductor having been transferred to a material having a low thermal conductivity, and alloying an interface between the semiconductor and the metal layer by irradiating the interface with a laser beam having a wavelength absorbable in at least one of the semiconductor and the metal layer. The irradiation energy of the laser beam is set in a range of 20 to 100 mJ/cm2. The material having a low thermal conductivity is a resin or amorphous silicon. According to the alloying method using laser irradiation, since the entire semiconductor is not heated and only a necessary portion is locally heated, the necessary portion can be readily alloyed to be converted into an ohmic contact without exerting adverse effect on characteristics of the semiconductor device.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: May 23, 2006
    Assignee: Sony Corporation
    Inventors: Katsuhiro Tomoda, Toyoharu Ohata
  • Patent number: 7011990
    Abstract: An alloying method includes the steps of forming a metal layer on a semiconductor having been transferred to a material having a low thermal conductivity, and alloying an interface between the semiconductor and the metal layer by irradiating the interface with a laser beam having a wavelength absorbable in at least one of the semiconductor and the metal layer. The irradiation energy of the laser beam is set in a range of 20 to 100 mJ/cm2. The material having a low thermal conductivity is a resin or amorphous silicon. According to the alloying method using laser irradiation, since the entire semiconductor is not heated and only a necessary portion is locally heated, the necessary portion can be readily alloyed to be converted into an ohmic contact without exerting adverse effect on characteristics of the semiconductor device.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: March 14, 2006
    Assignee: Sony Corporation
    Inventors: Katsuhiro Tomoda, Toyoharu Ohata
  • Patent number: 7008827
    Abstract: An alloying method includes the steps of forming a metal layer on a semiconductor having been transferred to a material having a low thermal conductivity, and alloying an interface between the semiconductor and the metal layer by irradiating the interface with a laser beam having a wavelength absorbable in at least one of the semiconductor and the metal layer. The irradiation energy of the laser beam is set in a range of 20 to 100 mJ/cm2. The material having a low thermal conductivity is a resin or amorphous silicon. According to the alloying method using laser irradiation, since the entire semiconductor is not heated and only a necessary portion is locally heated, the necessary portion can be readily alloyed to be converted into an ohmic contact without exerting adverse effect on characteristics of the semiconductor device.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: March 7, 2006
    Assignee: Sony Corporation
    Inventors: Katsuhiro Tomoda, Toyoharu Ohata
  • Patent number: 6984927
    Abstract: A display unit includes light emitting devices arrayed in such a manner as to be spaced from each other, and a sealing material for covering the surfaces of the light emitting devices, wherein the sealing material has a light diffusion function. The light diffusion function is given to the sealing material by providing a reflection mirror and a half mirror in the sealing material, dispersing, in the sealing material, fine particles having a refractive index different from that of the sealing material, or dispersing bubbles in the sealing material. Since the light diffusion function is given to the sealing material, the light emission region of each of the light emitting devices is substantially enlarged to a size nearly equal to an array pitch of the light emitting devices, to thereby obtain an image display excellent in viewability.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: January 10, 2006
    Assignee: Sony Corporation
    Inventors: Katsuhiro Tomoda, Toyoharu Oohata
  • Publication number: 20050233504
    Abstract: A device transfer method and a display apparatus are provided. A device transfer method and a display apparatus are provided by or in which, in transferring devices arranged on a substrate onto another substrate, it is possible to easily strip the substrate after the transfer of the devices, to lower the possibility of damaging of the substrate, and to additionally transfer devices onto the same substrate after the transfer of the devices. A plurality of devices arranged on a temporary holding substrate are embedded into and held in a pressure sensitive adhesive layer formed on a transfer substrate, and the devices are stripped from the temporary holding substrate. Other devices are further additionally embedded into the pressure sensitive adhesive layer before hardening the pressure sensitive adhesive layer, whereby the devices can be arranged on a transfer substrate having a large area.
    Type: Application
    Filed: January 28, 2004
    Publication date: October 20, 2005
    Inventors: Masato Doi, Katsuhiro Tomoda, Toshihiko Watanabe, Toyoharu Oohata
  • Publication number: 20050181601
    Abstract: An alloying method includes the steps of forming a metal layer on a semiconductor having been transferred to a material having a low thermal conductivity, and alloying an interface between the semiconductor and the metal layer, by irradiating the interface with a laser beam having a wavelength absorbable in at least one of the semiconductor and the metal layer. The irradiation energy of the laser beam is set in a range of 20 to 100 mJ/cm2. The material having a low thermal conductivity is a resin or amorphous silicon. According to the alloying method using laser irradiation, since the entire semiconductor is not heated and only a necessary portion is locally heated, the necessary portion can be readily alloyed to be converted into an ohmic contact without exerting adverse effect on characteristics of the semiconductor device.
    Type: Application
    Filed: April 11, 2005
    Publication date: August 18, 2005
    Inventors: Katsuhiro Tomoda, Toyoharu Ohata
  • Publication number: 20050181602
    Abstract: An alloying method includes the steps of forming a metal layer on a semiconductor having been transferred to a material having a low thermal conductivity, and alloying an interface between the semiconductor and the metal layer by irradiating the interface with a laser beam having a wavelength absorbable in at least one of the semiconductor and the metal layer. The irradiation energy of the laser beam is set in a range of 20 to 100 mJ/cm2. The material having a low thermal conductivity is a resin or amorphous silicon. According to the alloying method using laser irradiation, since the entire semiconductor is not heated and only a necessary portion is locally heated, the necessary portion can be readily alloyed to be converted into an ohmic contact without exerting adverse effect on characteristics of the semiconductor device.
    Type: Application
    Filed: April 11, 2005
    Publication date: August 18, 2005
    Inventors: Katsuhiro Tomoda, Toyoharu Ohata
  • Publication number: 20050181603
    Abstract: An alloying method includes the steps of forming a metal layer on a semiconductor having been transferred to a material having a low thermal conductivity, and alloying an interface between the semiconductor and the metal layer by irradiating the interface with a laser beam having a wavelength absorbable in at least one of the semiconductor and the metal layer. The irradiation energy of the laser beam is set in a range of 20 to 100 mJ/cm2. The material having a low thermal conductivity is a resin or amorphous silicon. According to the alloying method using laser irradiation, since the entire semiconductor is not heated and only a necessary portion is locally heated, the necessary portion can be readily alloyed to be converted into an ohmic contact without exerting adverse effect on characteristics of the semiconductor device.
    Type: Application
    Filed: April 11, 2005
    Publication date: August 18, 2005
    Inventors: Katsuhiro Tomoda, Toyoharu Ohata
  • Publication number: 20050176190
    Abstract: An alloying method includes the steps of forming a metal layer on a semiconductor having been transferred to a material having a low thermal conductivity, and alloying an interface between the semiconductor and the metal layer by irradiating the interface with a laser beam having a wavelength absorbable in at least one of the semiconductor and the metal layer. The irradiation energy of the laser beam is set in a range of 20 to 100 mJ/cm2. The material having a low thermal conductivity is a resin or amorphous silicon. According to the alloying method using laser irradiation, since the entire semiconductor is not heated and only a necessary portion is locally heated, the necessary portion can be readily alloyed to be converted into an ohmic contact without exerting adverse effect on characteristics of the semiconductor device.
    Type: Application
    Filed: April 11, 2005
    Publication date: August 11, 2005
    Inventors: Katsuhiro Tomoda, Toyoharu Ohata
  • Publication number: 20050156495
    Abstract: A display unit includes light emitting devices arrayed in such a manner as to be spaced from each other, and a sealing material for covering the surfaces of the light emitting devices, wherein the sealing material has a light diffusion function. The light diffusion function is given to the sealing material by providing a reflection mirror and a half mirror in the sealing material, dispersing, in the sealing material, fine particles having a refractive index different from that of the sealing material, or dispersing bubbles in the sealing material. Since the light diffusion function is given to the sealing material, the light emission region of each of the light emitting devices is substantially enlarged to a size nearly equal to an array pitch of the light emitting devices, to thereby obtain an image display excellent in viewability.
    Type: Application
    Filed: February 25, 2005
    Publication date: July 21, 2005
    Inventors: Katsuhiro Tomoda, Toyoharu Oohata
  • Patent number: 6878574
    Abstract: An alloying method includes steps of forming a metal layer on a semiconductor that is then transferred to a material having a low thermal conductivity. An interface between the semiconductor and the metal layer is formed into an alloy by irradiating the interface with a laser beam having a wavelength that is absorbable in at least one of the semiconductor and the metal layer. Preferably, the material having a low thermal conductivity is a resin or amorphous silicon. Because the entire semiconductor is not heated and only a necessary portion is locally heated, the necessary portion can be readily alloyed to be converted into an ohmic contact without exerting adverse effects on the characteristics of the semiconductor device.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: April 12, 2005
    Assignee: Sony Corporation
    Inventors: Katsuhiro Tomoda, Toyoharu Ohata
  • Patent number: 6873092
    Abstract: A display unit includes light emitting devices arrayed in such a manner as to be spaced from each other, and a sealing material for covering the surfaces of the light emitting devices, wherein the sealing material has a light diffusion function. The light diffusion function is given to the sealing material by providing a reflection mirror and a half mirror in the sealing material, dispersing, in the sealing material, fine particles having a refractive index different from that of the sealing material, or dispersing bubbles in the sealing material. Since the light diffusion function is given to the sealing material, the light emission region of each of the light emitting devices is substantially enlarged to a size nearly equal to an array pitch of the light emitting devices, to thereby obtain an image display excellent in viewability.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: March 29, 2005
    Assignee: Sony Corporation
    Inventors: Katsuhiro Tomoda, Toyoharu Oohata
  • Publication number: 20040023493
    Abstract: A method of isolating semiconductor devices by wet etching of a semiconductor laminate structure formed on a substrate includes providing an etching stop layer having at least two layers between the substrate and the semiconductor laminate structure. The semiconductor laminate structure is etched to isolate the semiconductor devices, the substrate is then etched away, followed by sequentially etching away of the etching stop layer.
    Type: Application
    Filed: May 6, 2003
    Publication date: February 5, 2004
    Inventor: Katsuhiro Tomoda
  • Patent number: 6683416
    Abstract: A method of transferring multiple devices arrayed on a first substrate to a second substrate is provided. The devices on the first substrate are covered with a release agent, and a portion of the release agent, positioned on a device to be transferred is selectively removed. The first substrate is placed on a second substrate in such a manner that the devices arrayed on the first substrate face an adhesive layer previously provided on the second substrate. Only the device from which the release agent has been removed, is irradiated with a laser beam from a back side of the first substrate. The second substrate is then peeled from the first substrate, whereby only the device to be transferred is certainly, efficiently, and accurately transferred from the first substrate to the second substrate.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: January 27, 2004
    Assignee: Sony Corporation
    Inventors: Toyoharu Oohata, Katsuhiro Tomoda
  • Publication number: 20040012337
    Abstract: A method of transferring multiple devices arrayed on a first substrate to a second substrate is provided. The devices on the first substrate are covered with a release agent, and a portion of the release agent, positioned on a device to be transferred is selectively removed. The first substrate is placed on a second substrate in such a manner that the devices arrayed on the first substrate face an adhesive layer previously provided on the second substrate. Only the device from which the release agent has been removed, is irradiated with a laser beam from a back side of the first substrate. The second substrate is then peeled from the first substrate, whereby only the device to be transferred is certainly, efficiently, and accurately transferred from the first substrate to the second substrate.
    Type: Application
    Filed: April 19, 2002
    Publication date: January 22, 2004
    Inventors: Toyoharu Oohata, Katsuhiro Tomoda
  • Publication number: 20030170971
    Abstract: An alloying method includes the steps of forming a metal layer on a semiconductor having been transferred to a material having a low thermal conductivity, and alloying an interface between the semiconductor and the metal layer by irradiating the interface with a laser beam having a wavelength absorbable in at least one of the semiconductor and the metal layer. The irradiation energy of the laser beam is set in a range of 20 to 100 mJ/cm2. The material having a low thermal conductivity is a resin or amorphous silicon. According to the alloying method using laser irradiation, since the entire semiconductor is not heated and only a necessary portion is locally heated, the necessary portion can be readily alloyed to be converted into an ohmic contact without exerting adverse effect on characteristics of the semiconductor device.
    Type: Application
    Filed: January 14, 2003
    Publication date: September 11, 2003
    Inventors: Katsuhiro Tomoda, Toyoharu Ohata
  • Publication number: 20030015959
    Abstract: A display unit includes light emitting devices arrayed in such a manner as to be spaced from each other, and a sealing material for covering the surfaces of the light emitting devices, wherein the sealing material has a light diffusion function. The light diffusion function is given to the sealing material by providing a reflection mirror and a half mirror in the sealing material, dispersing, in the sealing material, fine particles having a refractive index different from that of the sealing material, or dispersing bubbles in the sealing material. Since the light diffusion function is given to the sealing material, the light emission region of each of the light emitting devices is substantially enlarged to a size nearly equal to an array pitch of the light emitting devices, to thereby obtain an image display excellent in viewability.
    Type: Application
    Filed: July 10, 2002
    Publication date: January 23, 2003
    Inventors: Katsuhiro Tomoda, Toyoharu Oohata